Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(32): 29475-29484, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37599956

ABSTRACT

The growth of transition-metal dichalcogenides (TMDCs) has been performed so far using most established thin-film growth techniques (e.g., vapor phase transport, chemical vapor deposition, molecular beam epitaxy, etc.). However, because there exists no self-limiting mechanism for the growth of TMDCs, none of these techniques allows precise control of the number of TMDC layers over large substrate areas. Here, we explore the ion implantation of the parent TMDC atoms into a chemically neutral substrate for the synthesis of TMDC films. The idea is that once all of the ion-implanted species have reacted together, the synthesis reaction stops, thereby effectively stopping growth. In other words, even if there is no self-limiting mechanism, growth stops when the nutrients are exhausted. We have co-implanted Mo and S ions into c-oriented sapphire substrates using various doses corresponding to 1- to 5-layer atom counts. We find that the subsurface region of the sapphire substrates is amorphized by the ion implantation process, at least for implanted doses of 2-layer atom counts and over. For all doses, we have observed the formation of MoS2 material inside the sapphire after postimplantation annealing between 800 and 850 °C. We report that the order of implantation (i.e., whether S or Mo is implanted first) is an important parameter. More precisely, samples for which S is implanted first tend to yield thin crystals with a large lateral extension (more than 200 nm for 5-layer doses) and mainly located at the interface between the amorphized and crystalline sapphire. When Mo is first implanted, the MoS2 crystals still predominantly appear at the amorphous-crystalline interface (which is much rougher), but they are much thicker, suggesting a different nucleation mechanism.

2.
Nature ; 617(7962): 706-710, 2023 05.
Article in English | MEDLINE | ID: mdl-37225880

ABSTRACT

The radionuclide thorium-229 features an isomer with an exceptionally low excitation energy that enables direct laser manipulation of nuclear states. It constitutes one of the leading candidates for use in next-generation optical clocks1-3. This nuclear clock will be a unique tool for precise tests of fundamental physics4-9. Whereas indirect experimental evidence for the existence of such an extraordinary nuclear state is substantially older10, the proof of existence has been delivered only recently by observing the isomer's electron conversion decay11. The isomer's excitation energy, nuclear spin and electromagnetic moments, the electron conversion lifetime and a refined energy of the isomer have been measured12-16. In spite of recent progress, the isomer's radiative decay, a key ingredient for the development of a nuclear clock, remained unobserved. Here, we report the detection of the radiative decay of this low-energy isomer in thorium-229 (229mTh). By performing vacuum-ultraviolet spectroscopy of 229mTh incorporated into large-bandgap CaF2 and MgF2 crystals at the ISOLDE facility at CERN, photons of 8.338(24) eV are measured, in agreement with recent measurements14-16 and the uncertainty is decreased by a factor of seven. The half-life of 229mTh embedded in MgF2 is determined to be 670(102) s. The observation of the radiative decay in a large-bandgap crystal has important consequences for the design of a future nuclear clock and the improved uncertainty of the energy eases the search for direct laser excitation of the atomic nucleus.

3.
ACS Photonics ; 10(1): 101-110, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36691430

ABSTRACT

We provide the first systematic characterization of the structural and photoluminescence properties of optically active centers fabricated upon implantation of 30-100 keV Mg+ ions in synthetic diamond. The structural configurations of Mg-related defects were studied by the electron emission channeling technique for short-lived, radioactive 27Mg implantations at the CERN-ISOLDE facility, performed both at room temperature and 800 °C, which allowed the identification of a major fraction of Mg atoms (∼30 to 42%) in sites which are compatible with the split-vacancy structure of the MgV complex. A smaller fraction of Mg atoms (∼13 to 17%) was found on substitutional sites. The photoluminescence emission was investigated both at the ensemble and individual defect level in the 5-300 K temperature range, offering a detailed picture of the MgV-related emission properties and revealing the occurrence of previously unreported spectral features. The optical excitability of the MgV center was also studied as a function of the optical excitation wavelength to identify the optimal conditions for photostable and intense emission. The results are discussed in the context of the preliminary experimental data and the theoretical models available in the literature, with appealing perspectives for the utilization of the tunable properties of the MgV center for quantum information processing applications.

4.
J Chem Phys ; 157(16): 164703, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36319421

ABSTRACT

Two-dimensional (2D) allotropes of tellurium (Te), recently coined as tellurene, are currently an emerging topic of materials research due to the theoretically predicted exotic properties of Te in its ultrathin form and at the single atomic layer limit. However, a prerequisite for the production of such new and single elemental 2D materials is the development of simple and robust fabrication methods. In the present work, we report three different 2D superstructures of Te on Au(111) surfaces by following an alternative experimental deposition approach. We have investigated the superstructures using low-temperature scanning tunneling microscopy and spectroscopy, Auger electron spectroscopy (AES), and field emission AES. Three superstructures (13 × 13, 8 × 4, and √11 × âˆš11) of 2D Te are observed in our experiments, and the formation of these superstructures is accompanied by the lifting of the characteristic 23 × âˆš3 surface reconstruction of the Au(111) surface. Scanning tunneling spectroscopy reveals a strong dependence of the local electronic properties on the structural arrangement of the Te atoms on the Au(111) support, and we observe superstructure-dependent electronic resonances around the Fermi level and below the Au(111) conduction band. In addition to the appearance of the new electronic resonances, the emergence of band gaps with a p-type charge character has been evidenced for two out of three Te superstructures (13 × 13 and √11 × âˆš11) on the Au(111) support.

6.
Nano Lett ; 21(19): 8103-8110, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34519503

ABSTRACT

We report the formation of nanobubbles on graphene with a radius of the order of 1 nm, using ultralow energy implantation of noble gas ions (He, Ne, Ar) into graphene grown on a Pt(111) surface. We show that the universal scaling of the aspect ratio, which has previously been established for larger bubbles, breaks down when the bubble radius approaches 1 nm, resulting in much larger aspect ratios. Moreover, we observe that the bubble stability and aspect ratio depend on the substrate onto which the graphene is grown (bubbles are stable for Pt but not for Cu) and trapped element. We interpret these dependencies in terms of the atomic compressibility of the noble gas as well as of the adhesion energies between graphene, the substrate, and trapped atoms.

7.
ACS Nano ; 15(3): 5449-5458, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33596385

ABSTRACT

We report the incorporation of substitutional Mn atoms in high-quality, epitaxial graphene on Cu(111), using ultralow-energy ion implantation. We characterize in detail the atomic structure of substitutional Mn in a single carbon vacancy and quantify its concentration. In particular, we are able to determine the position of substitutional Mn atoms with respect to the Moiré superstructure (i.e., local graphene-Cu stacking symmetry) and to the carbon sublattice; in the out-of-plane direction, substitutional Mn atoms are found to be slightly displaced toward the Cu surface, that is, effectively underneath the graphene layer. Regarding electronic properties, we show that graphene doped with substitutional Mn to a concentration of the order of 0.04%, with negligible structural disorder (other than the Mn substitution), retains the Dirac-like band structure of pristine graphene on Cu(111), making it an ideal system in which to study the interplay between local magnetic moments and Dirac electrons. Our work also establishes that ultralow-energy ion implantation is suited for substitutional magnetic doping of graphene. Given the flexibility, reproducibility, and scalability inherent to ion implantation, our work creates numerous opportunities for research on magnetic functionalization of graphene and other two-dimensional materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...