Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Chem Biodivers ; 18(6): e2100094, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33860612

ABSTRACT

Magonia pubescens A. St.-Hil. is a Brazilian species often used in ethnopharmacology for wound and pain healing and seborrhea treatment. For the first time, essential oils (EOs) obtained from M. pubescens inflorescences were studied. The plant materials (Montes Claros, Brazil, 2018) were submitted to different gamma-radiation doses and their chemical compositions were analyzed by GC/MS and GC-FID. The cytotoxic activity of the EOs was evaluated against K562 and MDA-MB-231 cancer cell lines. A total of 30 components were identified, being 24 compounds detected for the first time in M. pubescens. The main obtained components were hotrienol (35.9 %), cis-linalool oxide (17.0 %) and trans-linalool oxide (10.2 %). The chemical composition of the EO was slightly affected by the applied radiation doses. Irradiated and non-irradiated EOs showed cytotoxic activity against both cell lines and the non-irradiated EO sample was the most active against the K562 cell lines (IC50 =22.10±1.98).


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Sapindaceae/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification
2.
Neurobiol Learn Mem ; 155: 92-103, 2018 11.
Article in English | MEDLINE | ID: mdl-29964163

ABSTRACT

Although the functional role for newborn neurons in neural circuits is still matter of investigation, there is no doubt that neurogenesis modulates learning and memory in rodents. In general, boosting neurogenesis before learning, using genetic-target tools or drugs, improves hippocampus-dependent memories. However, inhibiting neurogenesis may yield contradictory results depending on the type of memory evaluated. Here we tested the hypothesis that inhibiting constitutive neurogenesis would compromise social recognition memory (SRM). Male Swiss mice were submitted to three distinct procedures to inhibit neurogenesis: (1) intra-cerebral infusion of Cystosine-ß-D-Arabinofuranoside (AraC); (2) intra-peritoneal injection of temozolomide (TMZ) and (3) cranial gamma irradiation. All three methods decreased cell proliferation and neurogenesis in the dentate gyrus of the dorsal (dDG) and ventral hippocampus (vDG), and the olfactory bulb (OB). However, the percentage inhibition diverged between methods and brain regions. Ara-C, TMZ and gamma irradiation impaired SRM, though only gamma irradiation did not cause side effects on weight gain, locomotor activity and anxiety. Finally, we examined the contribution of cell proliferation in vDG, dDG and OB to SRM. The percent of inhibition in the dDG correlates with SRM, independently of the method utilized. This correlation was observed for granular cell layer of OB and vDG, only when the inhibition was induced by gamma irradiation. Animal's performance was restrained by the inhibition of dDG cell proliferation, suggesting that cell proliferation in the dDG has a greater contribution to SRM. Altogether, our results demonstrate that SRM, similarly to other hippocampus-dependent memories, has its formation impaired by reducing constitutive neurogenesis.


Subject(s)
Cell Proliferation/physiology , Hippocampus/physiology , Memory, Long-Term/physiology , Neurogenesis/physiology , Olfactory Bulb/physiology , Recognition, Psychology/physiology , Social Perception , Animals , Antineoplastic Agents, Alkylating/pharmacology , Behavior, Animal/drug effects , Behavior, Animal/physiology , Behavior, Animal/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Glycoside Hydrolases/pharmacology , Hippocampus/drug effects , Hippocampus/radiation effects , Male , Memory, Long-Term/drug effects , Memory, Long-Term/radiation effects , Mice , Neurogenesis/drug effects , Neurogenesis/radiation effects , Olfactory Bulb/drug effects , Olfactory Bulb/radiation effects , Radiation Injuries, Experimental , Recognition, Psychology/drug effects , Recognition, Psychology/radiation effects , Temozolomide/pharmacology
3.
Rev. bras. farmacogn ; 23(4): 600-607, Aug. 2013. graf, tab
Article in English | LILACS | ID: lil-686635

ABSTRACT

Leaves of Echinodorus macrophyllus (Kunth) Micheli, Alismataceae, were exposed to different doses of γ-radiation (0.00, 1.00, 3.00, 5.00, 10.00, and 20.00 kGy) and the chemical composition of their essential oils was investigated. The extractive process of the essential oil was more favored when the leaves were irradiated. The essential oil components were identified by correlation between GC-FID data and retention parameters obtained from the Kováts method. Moreover, GC-MS analyses of the essential oils were correlated with fragmentation profiles in the NIST standard mass fragmentation data bank. The essential oil of E. macrophyllus contains biologically active constituents of different chemical classes. Acyclic monoterpenes and sesquiterpenes showed increase in concentration when the leaves were exposed to γ-radiation. On the other hand, the component concentrations of some chemical classes were lightly decreased, i.e., for bicyclic monoterpenes, diterpenes, triterpenes, carboxylic esters, and carotenoid derivatives.

SELECTION OF CITATIONS
SEARCH DETAIL
...