Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Braz J Microbiol ; 54(3): 2027-2034, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37171534

ABSTRACT

Staphylococcus aureus (SA) can thrive in a wide variety of hosts and environments, causing clinical infections and foodborne intoxications. In Brazil, SA is commonly isolated from traditional soft cheeses, especially those prepared from unpasteurized milk. In this research, the isolate S. aureus SABRC1 was evaluated for virulence traits under different conditions, including co-inoculation with Lactococcus lactis MC5 (isolated from "Fresh Minas Cheese"), which produces antibacterial peptides. Results from experiments with Caco-2 culture indicated S. aureus SABRC1 was able to adhere (42.83 ± 1.79%) and to invade (48.57 ± 0.41%) the intestinal cells. On the other hand, L. lactis MC5 presented anti-staphylococcal activity as indicated by agar assays, and it was also able to antagonize intestinal cell invasion by S. aureus. Moreover, Reverse Transcriptase-PCR experiments showed virulence genes of S. aureus SABRC1 (hla, icaA and sea) were differentially expressed under diverse culture conditions, which included Brain Heart Infusion modified or not by the addition of glucose, sodium chloride, milk or cheese. This suggests the virulence of S. aureus SABRC1 is influenced by compounds commonly found in daily diets, and not only by its genetic repertoire, adding a novel level of complexity for controlling infection by this pathogen.


Subject(s)
Cheese , Lactococcus lactis , Staphylococcal Infections , Humans , Animals , Staphylococcus aureus , Virulence , Cheese/microbiology , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Caco-2 Cells , Cell Culture Techniques , Gene Expression , Milk/microbiology
2.
Front Microbiol ; 13: 928480, 2022.
Article in English | MEDLINE | ID: mdl-36147852

ABSTRACT

Sessile microorganisms are usually recalcitrant to antimicrobial treatments, and it is possible that finding biofilm-related effectors in metatranscriptomics datasets helps to understand mechanisms for bacterial persistence in diverse environments, by revealing protein-encoding genes that are expressed in situ. For this research, selected dairy-associated metatranscriptomics bioprojects were downloaded from the public databases JGI GOLD and NCBI (eight milk and 45 cheese samples), to screen for sequences encoding biofilm-related effectors. Based on the literature, the selected genetic determinants were related to adhesins, BAP, flagellum-related, intraspecific QS (AHL, HK, and RR), interspecific QS (LuxS), and QQ (AHL-acylases, AHL-lactonases). To search for the mRNA sequences encoding for those effector proteins, a custom database was built from UniprotKB, yielding 1,154,446 de-replicated sequences that were indexed in DIAMOND for alignment. The results revealed that in all the dairy-associated metatranscriptomic datasets obtained, there were reads assigned to genes involved with flagella, adhesion, and QS/QQ, but BAP-reads were found only for milk. Significant Pearson correlations (p < 0.05) were observed for transcripts encoding for flagella, RR, histidine kinases, adhesins, and LuxS, although no other significant correlations were found. In conclusion, the rationale used in this study was useful to demonstrate the presence of biofilm-associated effectors in metatranscriptomics datasets, pointing out to possible regulatory mechanisms in action in dairy-related biofilms, which could be targeted in the future to improve food safety.

3.
World J Microbiol Biotechnol ; 37(2): 31, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33458785

ABSTRACT

Spheroids of intestinal cells (Caco-2) were used to evaluate the adhesion/invasion ability of Listeria monocytogenes (pathogen) and Lactobacillus sakei 1 (potential probiotic). Besides, transcriptomic analyses of Caco-2 cells in three dimensional cultures were done, with the aim of revealing possible host-foodborne bacteria interactions. Result of adhesion assay for L. monocytogenes in Caco-2 spheroids was 22.86 ± 0.33%, but it was stimulated in acidic pH (4.5) and by the presence of 2% sucrose (respectively, 32.56 ± 1.35% and 33.25 ± 1.26%). Conversely, the invasion rate of L. monocytogenes was lower at pH 4.5, in comparison with non-stressed controls (18.89 ± 1.05% and 58.65 ± 0.30%, respectively). L. sakei 1 adhered to Caco-2 tridimensional cell culture (27.30 ± 2.64%), with no invasiveness. There were 19 and 21 genes down and upregulated, respectively, in tridimensional Caco-2 cells, upon infection with L. monocytogenes, which involved immunity, apoptosis; cytoprotective responses, cell signalling-regulatory pathways. It was evidenced despite activation or deactivation of several pathways in intestinal cells to counteract infection, the pathogen was able to hijack many host defense mechanisms. On the other hand, the probiotic candidate L. sakei 1 was correlated with decreased transcription of two genes in Caco-2 cells, though it stimulated the expression of 14 others, with diverse roles in immunity, apoptosis, cytoprotective response and cell signalling-regulatory pathways. Our data suggest the use of tridimensional cell culture to mimic the intestinal epithelium is a good model for gathering broad information on the putative mechanisms of interaction between host and bacteria of importance for food safety, which can serve as a basis for further in-depth investigation.


Subject(s)
Cell Culture Techniques/methods , Intestines/cytology , Latilactobacillus sakei/physiology , Listeria monocytogenes/physiology , Bacterial Adhesion , Bioreactors/microbiology , Caco-2 Cells , Cell Proliferation , Gene Expression Profiling , Gene Expression Regulation/drug effects , Humans , Hydrogen-Ion Concentration , Intestines/chemistry , Intestines/microbiology , Probiotics/pharmacology , Spheroids, Cellular/chemistry , Spheroids, Cellular/cytology
4.
Foodborne Pathog Dis ; 18(4): 243-252, 2021 04.
Article in English | MEDLINE | ID: mdl-33337940

ABSTRACT

Listeria monocytogenes is a foodborne pathogen of global relevance that causes outbreaks and sporadic cases of listeriosis, acquired through the consumption of contaminated products, including milk or meat products and ready-to-eat meat products subjected to intensive handling. The objective of the present study was to classify L. monocytogenes isolated from various food-related sources in the Federal District of Brazil and surrounding areas to sequence internalin A (inlA) genes from these isolates and assess their adhesion and invasion capacity using Caco-2 cells. In addition, 15 were classified as group I, 3 as group II, and 7 classified as group IV. Premature stop codons (PMSCs) at the nucleotide position 976 (GAA→TAA) of the inlA gene were identified in 5 of the 25 isolates. Adhesion and invasion tests in Caco-2 cells showed that all the isolates were capable of adhesion and cellular invasion, with isolates containing PMSCs exhibiting on average higher invasion capacity than those without PMSCs (p = 0.041) and a median of adhesion very distinctive from those without stop codons. These results are the first report of PMSCs in the inlA gene of L. monocytogenes from the Federal District of Brazil and Brazil.


Subject(s)
Bacterial Proteins/genetics , Cell Adhesion/genetics , Food Microbiology , Listeria monocytogenes/isolation & purification , Meat Products/microbiology , Animals , Brazil , Caco-2 Cells , Codon, Nonsense/isolation & purification , Humans , Sequence Analysis
5.
Int J Biol Macromol ; 136: 1133-1141, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31220494

ABSTRACT

ß-glucosidases (BGLs) hydrolyze short-chain cellulooligosaccharides. Some BGLs can hydrolyze anthocyanins and be applied in the clarification process of food industries, especially grape juice and wine. Enzyme immobilization is a valuable tool to increase enzyme stabilization. In this work, Malbranchea pulchella BGL was immobilized on Monoaminoethyl-N-ethyl-agarose ionic support, MANAE-agarose, and Concanavalin A-Sepharose affinity support, Con-A-Sepharose. The formed biocatalysts, denominated BLG-MANAE and BLG-ConA, were applied in the grape juice and red wine clarification. BGL-MANAE and BGL-ConA hyperactivated M. pulchella BGL 10- and 3-fold, respectively. Both biocatalysts showed at least 70% activity at pH range 2-11, until 24 h incubation. BGL-MANAE and BGL-ConA showed activity of 60% and 100%, respectively, at 50 °C, up to 24 h. Both biocatalysts were efficiently reused 20-fold. They were stable in the presence of up to 0.1 M glucose for 24 h incubation, and with 5%, 10% and 15% ethanol kept up to 70% activity. BGL-MANAE biocatalyst was 11% and 25% more efficient than BGL-ConA in clarification of concentrate and diluted wines, respectively. Likewise, BGL-MANAE biocatalysts were 14% and 33% more efficient than the BGL-ConA in clarification of diluted and concentrated juices, respectively. Therefore, the BGL-MANAE biocatalyst was especially effective in red wine and grape juice clarification.


Subject(s)
Anthocyanins/metabolism , Ascomycota/enzymology , Fruit and Vegetable Juices/analysis , Sepharose/analogs & derivatives , Vitis/chemistry , Wine/analysis , beta-Glucosidase/metabolism , Biocatalysis , Enzyme Activation , Enzyme Stability , Enzymes, Immobilized/antagonists & inhibitors , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Glucose/pharmacology , Hydrogen-Ion Concentration , Hydrolysis , Sepharose/chemistry , Temperature , beta-Glucosidase/antagonists & inhibitors , beta-Glucosidase/chemistry
6.
Sci Total Environ ; 634: 1346-1351, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29710634

ABSTRACT

Bisphenol A (BPA) is an endocrine disruptor compound that is continuously released into the environment and is barely degraded in wastewater treatment plants. A previous study showed that free Pleurotus ostreatus laccase is efficient in degrading BPA producing less toxic metabolites. In the present study, this laccase was successfully immobilized onto MANAE-agarose, improving its efficiency in degrading BPA and its thermal and storage stabilities. In addition to this, the immobilized enzyme retained >90% of its initial capability to degrade BPA after 15cycles of reuse. P. ostreatus laccase immobilized onto MANAE-agarose could be an economical alternative for large scale degradation of BPA in aqueous systems.


Subject(s)
Benzhydryl Compounds/metabolism , Endocrine Disruptors/metabolism , Laccase/metabolism , Phenols/metabolism , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Benzhydryl Compounds/analysis , Biodegradation, Environmental , Endocrine Disruptors/analysis , Enzymes, Immobilized , Phenols/analysis , Pleurotus , Sepharose , Wastewater , Water Pollutants, Chemical/analysis
7.
Biota Neotrop. (Online, Ed. ingl.) ; 17(3): e20170337, 2017. tab, graf
Article in English | LILACS | ID: biblio-951119

ABSTRACT

Abstract Filamentous fungi are widely diverse and ubiquitous organisms. Such biodiversity is barely known, making room for a great potential still to be discovered, especially in tropical environments - which are favorable to growth and species variety. Filamentous fungi are extensively applied to the production of industrial enzymes, such as the amylases. This class of enzymes acts in the hydrolysis of starch to glucose or maltooligosaccharides. In this work twenty-five filamentous fungi were isolated from samples of decomposing material collected in the Brazilian Atlantic Forest. The two best amylase producers were identified as Aspergillus brasiliensis and Rhizopus oryzae. Both are mesophilic, they grow well in organic nitrogen-rich media produce great amounts of glucoamylases. The enzymes of A. brasiliensis and R. oryzae are different, possibly because of their phylogenetical distance. The best amylase production of A. brasiliensis occurred during 120 hours with initial pH of 7.5; it had a better activity in the pH range of 3.5-5.0 and at 60-75°C. Both fungal glucoamylase had wide pH stability (3-8) and were activated by Mn2+. R. oryzae best production occurred in 96 hours and at pH 6.5. Its amylases had a greater activity in the pH range of 4.0-5.5 and temperature at 50-65ºC. The most significant difference between the enzymes produced by both fungi is the resistance to thermal denaturation: A. brasiliensis glucoamylase had a T50 of 60 minutes at 70ºC. The R. oryzae glucoamylase only had a residual activity when incubated at 50°C with a 12 min T50.


Resumo Fungos filamentosos são organismos amplamente diversificados e ubíquos. Esta biodiversidade ainda é pouco caracterizada, desta forma, há um grande potencial a ser descoberto, sobretudo em biomas tropicais, que favorecem o crescimento e diversificação de espécies. Fungos filamentosos são extensivamente utilizados para a produção industrial de enzimas, como as amilases. Esta classe de enzimas atua na hidrólise do amido em glicose ou maltooligossacarídeos. Neste trabalho 25 cepas de fungos filamentosos foram isoladas a partir de amostras de material em decomposição coletados na Mata Atlântica Brasileira. As duas cepas que produziram mais amilases foram identificadas como Aspergillus brasiliensis e Rhizopus oryzae. Ambos os fungos são mesofílicos, crescem bem em meio de cultivo rico em nitrogênio orgânico, e produziram grande quantidade de glucoamilase. As enzimas de A. brasiliensis e R. oryzae possuem características distintas, possivelmente devido à distância filogenética das espécies. A produção de amilase mais expressiva de A. brasiliensis ocorreu em 120 horas de cultivo e pH inicial de 7,5; possui maior atividade em temperaturas entre 60-75ºC e pH entre 3,5-5,0. Ambas glucoamilases fúngicas obtiveram ampla estabilidade de pH (3-8) e foram ativadas por Mn2+. A melhor produção de R. oryzae ocorreu em 96 horas de cultivo e pH 6,5. Suas amilases são mais ativas na faixa de pH de 4,0-5,5 e temperatura entre 50-60ºC. A diferença mais significativa dentre as enzimas produzidas pelos fungos selecionados é a resistência à desnaturação térmica, tendo a glucoamilase de A. brasiliensis um T50 de 60 minutos a 70ºC, já a glucoamilase de R. oryzae somente obteve atividade residual quando incubada a 50°C, com um T50 de apenas 12 minutos.

8.
J Microbiol ; 49(5): 809-15, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22068499

ABSTRACT

The thermophilic fungus Malbranchea pulchella var. sulfurea produced good amounts of extracellular trehalase activity when grown for long periods on starch, maltose or glucose as the main carbon source. Studies with young cultures suggested that the main role of the extracellular acid trehalase is utilizing trehalose as a carbon source. The specific activity of the purified enzyme in the presence of manganese (680 U/mg protein) was comparable to that of other thermophilic fungi enzymes, but many times higher than the values reported for trehalases from other microbial sources. The apparent molecular mass of the native enzyme was estimated to be 104 kDa by gel filtration and 52 kDa by SDS-PAGE, suggesting that the enzyme was composed by two subunits. The carbohydrate content of the purified enzyme was estimated to be 19 % and the pi was 3.5. The optimum pH and temperature were 5.0-5.5 and 55° C, respectively. The purified enzyme was stimulated by manganese and inhibited by calcium ions, and insensitive to ATP and ADP, and 1 mM silver ions. The apparent K(M) values for trehalose hydrolysis by the purified enzyme in the absence and presence of manganese chloride were 2.70 ± 0.29 and 2.58 ± 0.13 mM, respectively. Manganese ions affected only the apparent V(max), increasing the catalytic efficiency value by 9.2-fold. The results reported herein indicate that Malbranchea pulchella produces a trehalase with mixed biochemical properties, different from the conventional acid and neutral enzymes and also from trehalases from other thermophilic fungi.


Subject(s)
Onygenales/enzymology , Trehalase/isolation & purification , Trehalase/metabolism , Trehalose/metabolism , Chromatography, Gel , Electrophoresis, Polyacrylamide Gel , Enzyme Activators/metabolism , Enzyme Inhibitors , Enzyme Stability , Hydrogen-Ion Concentration , Isoelectric Point , Kinetics , Manganese/metabolism , Molecular Weight , Protein Subunits/chemistry , Temperature , Trehalase/chemistry
9.
J Microbiol ; 47(3): 270-6, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19557344

ABSTRACT

Aspergillus versicolor grown on xylan or xylose produces two beta-xylosidases with differences in biochemical properties and degree of glycosylation. We investigated the alterations in the biochemical properties of these beta-xylosidases after deglycosylation with Endo-H or PNGase F. After deglycosylation, both enzymes migrated faster in PAGE or SDS-PAGE exhibiting the same R(f). Temperature optimum of xylan-induced and xylose-induced beta-xylosidases was 45 degrees C and 40 degrees C, respectively, and 35 degrees C after deglycosylation. The xylan-induced enzyme was more active at acidic pH. After deglycosylation, both enzymes had the same pH optimum of 6.0. Thermal resistance at 55 degrees C showed half-life of 15 min and 9 min for xylose- and xylan-induced enzymes, respectively. After deglycosylation, both enzymes exhibited half-lives of 7.5 min. Native enzymes exhibited different responses to ions, while deglycosylated enzymes exhibited identical responses. Limited proteolysis yielded similar polypeptide profiles for the deglycosylated enzymes, suggesting a common polypeptide core with differential glycosylation apparently responsible for their biochemical and biophysical differences.


Subject(s)
Aspergillus/enzymology , Fungal Proteins/metabolism , Glycoproteins/metabolism , Protein Processing, Post-Translational , Xylosidases/metabolism , Enzyme Stability , Fungal Proteins/chemistry , Fungal Proteins/isolation & purification , Glycoproteins/chemistry , Glycoproteins/isolation & purification , Glycosylation , Hydrogen-Ion Concentration , Temperature , Xylosidases/chemistry , Xylosidases/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...