Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37834027

ABSTRACT

This study employs electrochemical and Density Functional Theory (DFT) calculation approaches to investigate the potential of a novel analogue of trimetozine (TMZ) antioxidant profile. The correlation between oxidative stress and psychological disorders indicates that antioxidants may be an effective alternative treatment option. Butylatedhydroxytoluene (BHT) is a synthetic antioxidant widely used in industry. The BHT-TMZ compound derived from molecular hybridization, known as LQFM289, has shown promising results in early trials, and this study aims to elucidate its electrochemical properties to further support its potential as a therapeutic agent. The electrochemical behavior of LQFM289 was investigated using voltammetry and a mechanism for the redox process was proposed based on the compound's behavior. LQFM289 exhibits two distinct oxidation peaks: the first peak, Ep1a ≈ 0.49, corresponds to the oxidation of the phenolic fraction (BHT), and the second peak, Ep2a ≈ 1.2 V (vs. Ag/AgCl/KClsat), denotes the oxidation of the amino group from morpholine. Electroanalysis was used to identify the redox potentials of the compound, providing insight into its reactivity and stability in different environments. A redox mechanism was proposed based on the resulting peak potentials. The DFT calculation elucidates the electronic structure of LQFM289, resembling the precursors of molecular hybridization (BHT and TMZ), which may also dictate the pharmacophoric performance.


Subject(s)
Antioxidants , Morpholines , Antioxidants/chemistry , Oxidation-Reduction , Anxiety
2.
Biosensors (Basel) ; 12(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36551079

ABSTRACT

Antioxidants are responsible for many beneficial health effects and are highly present in natural products, such as kombucha. Biosensors' development targeting antioxidants and phytomarkers are an active research field. This work aimed to propose a voltammetric polyphenolxidase (Cordia superba) biosensor for catechin and total phenolic compounds quantification in kombucha samples. Optimizations were performed on the biosensor of Cordia superba to improve the accuracy and selectivity, such as enzyme-substrate interaction time, analytical responses for different patterns and signal differences with the carbon paste and modified carbon paste electrode. Kombucha probiotic drink samples were fermented for 7 to 14 days at a controlled temperature (28 ± 2 °C). A linear curve was made for catechin with a range of 10.00 to 60.00 µM, with a limit of detection of 0.13 µM and limit of quantification of 0.39 µM. The biosensor proposed in this work was efficient in determining the patterns of phenolic compounds in kombucha.


Subject(s)
Biosensing Techniques , Catechin , Cordia , Antioxidants , Phenols , Carbon/chemistry
3.
Chem Biodivers ; 18(12): e2100704, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34610211

ABSTRACT

Variability of secondary metabolites in edible (peel and pulp) and inedible (seeds) parts of three pitanga varieties, red, red-orange and purple, was investigated during the maturation process. Hydrolysable tannins, anthocyanins, and flavonoids were quantified by HPLC/DAD and carotenoids by absorbance. Peel/pulp showed greater complexity of constituents (carotenoids, anthocyanins, flavonoids, and hydrolysable tannins), while only tannins were identified in seeds, but in quantities of 10 to 100 times greater. The red-orange variety showed the highest levels of phenolic compounds in seeds and peel/pulp, except anthocyanins. The analysis of the principal response curves showed that the pitanga biotype has greater influence on metabolite variation than ripening stages. During peel/pulp maturation, a reduction in the levels of flavonoids and tannins contrasted with an increase in carotenoids and cyanidin-3-O-glucoside in all varieties, whereas in the seeds oenothein B, the major tannin, increased up to 1.32 g/100 g fresh weight. Such marked differences between fruit parts demonstrate that the seeds in stages E3 and E4 are a source of hydrolysable tannins, compounds known for their antitumor activity, while peel/pulp of all varieties in the ripe stage provide natural antioxidants, such as carotenoids and flavonoids. Lastly, the purple biotype can be a rich source of the cyanidin-3-O-glucoside pigment a potent bioactive compound.


Subject(s)
Anthocyanins/isolation & purification , Antioxidants/isolation & purification , Carotenoids/isolation & purification , Eugenia/chemistry , Flavonoids/isolation & purification , Tannins/isolation & purification , Anthocyanins/chemistry , Antioxidants/chemistry , Carotenoids/chemistry , Flavonoids/chemistry , Fruit/chemistry , Molecular Structure , Tannins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...