Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999949

ABSTRACT

It is known that the inflammation process leading to oxidative stress and thyroid hormone metabolism dysfunction is highly altered in metabolic dysfunction associated with steatotic liver disease (MASLD). This study aims to address the effect of ornithine aspartate (LOLA) and vitamin E (VitE) in improving these processes. Adult Sprague-Dawley rats were assigned to five groups and treated for 28 weeks: controls (n = 10) received a standard diet (for 28 weeks) plus gavage with distilled water (DW) from weeks 16 to 28. MASLD groups received a high-fat and choline-deficient diet for 28 weeks (MASLD group) and daily gavage with 200 mg/kg/day of LOLA, or twice a week with 150 mg of VitE from weeks 16-28. LOLA diminished collagen deposition (p = 0.006). The same treatment diminished carbonyl, TBARS, and sulfhydryl levels and GPx activity (p < 0.001). Type 3 deiodinase increased in the MASLD group, downregulating T3-controlled genes, which was corrected in the presence of LOLA. LOLA also promoted a near-normalization of complex II, SDH, and GDH activities (p < 0.001) and improved reticulum stress, with a reduction in GRP78 and HSPA9/GRP75 protein levels (p < 0.05). The enhanced energy production and metabolism of thyroid hormones, probably because of GSH replenishment provided by the L-glutamate portion of LOLA, opens a new therapeutic approach for MASLD.


Subject(s)
Oxidative Stress , Rats, Sprague-Dawley , Vitamin E , Animals , Rats , Vitamin E/pharmacology , Vitamin E/metabolism , Male , Oxidative Stress/drug effects , Fatty Liver/metabolism , Fatty Liver/pathology , Liver/metabolism , Liver/pathology , Liver/drug effects , Thyroid Hormones/metabolism , Dipeptides
2.
Nutrition ; 106: 111888, 2023 02.
Article in English | MEDLINE | ID: mdl-36436334

ABSTRACT

OBJECTIVES: Alcoholic liver disease (ALD) is the leading cause of alcohol-related deaths worldwide. Experimental ALD models are expensive and difficult to reproduce. A low-cost, reproducible ALD model was developed, and liver damage compared with the gut microbiota. The aims of this study were to develop an experimental model of ALD, through a high-fat diet, the chronic use of ethanol, and intragastric alcohol binge; and to evaluate the composition of the gut microbiota and its correlation with markers of inflammatory and liver disease progression in this model. METHODS: Adult male Wistar rats were randomized (N = 24) to one of three groups: control (standard diet and water + 0.05% saccharin), ALC4 and ALC8 (sunflower seed, 10% ethanol + 0.05% saccharin for 4 and 8 wk, respectively). On the last day, ALC4/8 received alcoholic binge (5 g/kg). Clinical, nutritional, biochemical, inflammatory, pathologic, and gut microbiota data were analyzed. RESULTS: ALC4/8 animals consumed more alcohol and lipids (P < 0.01) and less total energy, liquids, solids, carbohydrates, and proteins (P < 0.01), and gained less weight (P < 0.01) than controls. ALC8 had lower Lee index scores than controls and ALC4 (P < 0.01). Aminotransferases increased and albumin diminished in ALC4/8 but not in the control group (P < 0.03 for all). Glucose and aspartate transaminase/alanine aminotransaminase ratios were higher in the ALC8 rats than in the controls (P < 0.03). Cholesterol was higher in ALC4 and lower in ALC8 compared with controls (P < 0.03). Albumin and high-density lipoprotein cholesterol levels were lower in ALC8 (P < 0.03). Hepatic concentration of triacylglycerols was higher in ALC8 than in ALC4 and controls (P < 0.05). ALC4/8 presented microvesicular grade 2 and 3 steatosis, respectively, and macrovesicular grade 1. No change in the gene expression of inflammatory markers between groups was seen. ALC4/8 had lower fecal bacterial α-diversity and relative abundance of Firmicutes (P < 0.005) and greater Bacterioidetes (P < 0.0007) and Protobacteria (P < 0.001) than controls. Gut microbiota correlated with serum and liver lipids, steatosis, albumin, and aminotransferases (P < 0.01 for all). CONCLUSION: The model induced nutritional, biochemical, histologic, and gut microbiota changes, and appears to be useful in the study of therapeutic targets.


Subject(s)
Fatty Liver , Gastrointestinal Microbiome , Liver Diseases, Alcoholic , Rats , Male , Animals , Gastrointestinal Microbiome/genetics , Saccharin/metabolism , Rats, Wistar , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/microbiology , Liver/metabolism , Ethanol/metabolism , Fatty Liver/metabolism , Transaminases/metabolism , Lipids
3.
Biomolecules ; 12(12)2022 11 28.
Article in English | MEDLINE | ID: mdl-36551202

ABSTRACT

Cardiovascular (CV) disease is the main cause of death in nonalcoholic fatty liver disease (NAFLD), a clinical condition without any approved pharmacological therapy. Thus, we investigated the effects of ornithine aspartate (LOLA) and/or Vitamin E (VitE) on CV parameters in a steatohepatitis experimental model. Adult Sprague Dawley rats were randomly assigned (10 animals each) and treated from 16 to 28 weeks with gavage as follows: controls (standard diet plus distilled water (DW)), NAFLD (high-fat choline-deficient diet (HFCD) plus DW), NAFLD+LOLA (HFCD plus LOLA (200 mg/kg/day)), NAFLD+VitE (HFCD plus VitE (150 mg twice a week)) or NAFLD+LOLA+VitE in the same doses. Atherogenic ratios were higher in NAFLD when compared with NAFLD+LOLA+VitE and controls (p < 0.05). Serum concentration of IL-1ß, IL-6, TNF-α, MCP-1, e-selectin, ICAM-1, and PAI-1 were not different in intervention groups and controls (p > 0.05). NAFLD+LOLA decreased miR-122, miR-33a, and miR-186 (p < 0.05, for all) in relation to NAFLD. NAFLD+LOLA+VitE decreased miR-122, miR-33a and miR-186, and increased miR-126 (p < 0.05, for all) in comparison to NAFLD and NAFLD+VitE. NAFLD+LOLA and NAFLD+LOLA+VitE prevented liver collagen deposition (p = 0.006) in comparison to NAFLD. Normal cardiac fibers (size and shape) were lower in NAFLD in relation to the others; and the inverse was reported for the percentage of regular hypertrophic cardiomyocytes. NAFLD+LOLA+VitE promoted a significant improvement in atherogenic dyslipidemia, liver fibrosis, and paracrine signaling of lipid metabolism and endothelial dysfunction. This association should be further explored in the treatment of NAFLD-associated CV risk factors.


Subject(s)
Cardiovascular Diseases , Dipeptides , Non-alcoholic Fatty Liver Disease , Vitamin E , Animals , Rats , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Liver/metabolism , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/complications , Rats, Sprague-Dawley , Risk Factors , Vitamin E/therapeutic use , Disease Models, Animal , Dipeptides/therapeutic use , Drug Therapy, Combination
SELECTION OF CITATIONS
SEARCH DETAIL
...