Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Mem Inst Oswaldo Cruz ; 119: e240013, 2024.
Article in English | MEDLINE | ID: mdl-38896633

ABSTRACT

BACKGROUND: The impact of Schistosoma mansoni infection over the immune response and the mechanisms involved in pathogenesis are not yet completely understood. OBJECTIVES: This study aimed to evaluate the expression of innate immune receptors in three distinct mouse lineages (BALB/c, C57BL/6 and Swiss) during experimental S. mansoni infection with LE strain. METHODS: The parasite burden, intestinal tissue oogram and presence of hepatic granulomas were evaluated at 7- and 12-weeks post infection (wpi). The mRNA expression for innate Toll-like receptors, Nod-like receptors, their adaptor molecules, and cytokines were determined at 2, 7 and 12 wpi in the hepatic tissue by real-time quantitative polymerase chain reaction (qPCR). FINDINGS: Swiss mice showed 100% of survival, had lower parasite burden and intestinal eggs, while infected BALB/c and C57BL/6 presented 80% and 90% of survival, respectively, higher parasite burden and intestinal eggs. The three mouse lineages displayed distinct patterns in the expression of innate immune receptors, their adaptor molecules and cytokines, at 2 and 7 wpi. MAIN CONCLUSIONS: Our results suggest that the pathogenesis of S. mansoni infection is related to a dynamic early activation of innate immunity receptors and cytokines important for the control of developing worms.


Subject(s)
Cytokines , Immunity, Innate , Mice, Inbred BALB C , Mice, Inbred C57BL , Schistosomiasis mansoni , Animals , Schistosomiasis mansoni/immunology , Immunity, Innate/immunology , Cytokines/immunology , Mice , Schistosoma mansoni/immunology , Disease Models, Animal , Female , Toll-Like Receptors/immunology , Real-Time Polymerase Chain Reaction , Parasite Egg Count , Male , RNA, Messenger , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology
2.
Parasit Vectors ; 17(1): 208, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720313

ABSTRACT

BACKGROUND: Triatoma infestans, Triatoma brasiliensis, Triatoma pseudomaculata and Rhodnius prolixus are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. Chickens serve as an important blood food source for triatomines. This study aimed to assess the insecticidal activity of fluralaner (Exzolt®) administered to chickens against triatomines (R. prolixus, T. infestans, T. brasiliensis and T. pseudomaculata). METHODS: Twelve non-breed chickens (Gallus gallus domesticus) were randomized based on weight into three groups: negative control (n = 4); a single dose of 0.5 mg/kg fluralaner (Exzolt®) (n = 4); two doses of 0.5 mg/kg fluralaner (Exzolt®) (n = 4). Nymphs of 3rd, 4th and 5th instars of R. prolixus, T. infestans, T. brasiliensis and T. pseudomaculata (all n = 10) were allowed to feed on chickens before treatment, and at intervals of 1, 7, 14, 21, 28, 35 and 56 days after treatment, with insect mortality determined. RESULTS: Treatment with two doses of fluralaner showed higher insecticidal efficacy against R. prolixus, T. infestans and T. brasiliensis compared to the single-dose treatment. Similar insecticidal efficacy was observed for T. pseudomaculata for one and two doses of fluralaner. Insecticidal activity of fluralaner (Exzolt®) against triatomine bugs was noted up to 21 and 28 days after treatment with one and two doses of fluralaner, respectively. CONCLUSIONS: The results demonstrate that treatment of chickens with fluralaner (Exzolt®) induces insecticidal activity against triatomines for up to 28 days post-treatment, suggesting its potential use as a control strategy for Chagas disease in endemic areas.


Subject(s)
Chickens , Insecticides , Isoxazoles , Animals , Chickens/parasitology , Isoxazoles/pharmacology , Isoxazoles/administration & dosage , Insecticides/pharmacology , Insecticides/administration & dosage , Insect Vectors/drug effects , Chagas Disease/transmission , Chagas Disease/drug therapy , Chagas Disease/veterinary , Triatominae , Nymph/drug effects , Poultry Diseases/parasitology , Poultry Diseases/prevention & control , Triatoma/drug effects
3.
Curr Pharm Teach Learn ; 14(9): 1177-1184, 2022 09.
Article in English | MEDLINE | ID: mdl-36154963

ABSTRACT

INTRODUCTION: Many pharmacy residency programs set their application deadlines around the first of the calendar year, only weeks following the American Society of Health-System Pharmacists (ASHP) meeting in mid-December. This contributes to a condensed timeframe for applicants and reference writers to complete and submit materials over the winter holidays. This study examined pharmacy residency program application deadlines and respective timing of application and reference letter submissions. METHODS: This retrospective, observational study evaluated all residency programs within the ASHP residency directory. Several scenarios were examined for impact of a universal earliest deadline (UED) designation spanning early January. Subsequent analysis included compilation of application and reference submission dates from a sample of ASHP-accredited residency programs to determine timing of submission in regard to application deadline. RESULTS: A total of 2449 programs representing 4927 positions were identified for the 2018-2019 application cycle. The mean deadline was 5 January (± three days), and 11% of programs had a deadline prior to 1 January. Among the five first-year residency programs that provided application and reference submission data spanning the 2016-2020 application cycles, the average time from submission to application deadline was four days for applicants and 11 days for references. CONCLUSIONS: Most pharmacy residency programs have deadlines in early January. Implementation of a UED would cause a major shift for these programs but is only one component of change for the application process.


Subject(s)
Internship and Residency , Pharmacy Residencies , Humans , Pharmacists , Retrospective Studies , United States
4.
Front Cell Infect Microbiol ; 11: 696719, 2021.
Article in English | MEDLINE | ID: mdl-34336720

ABSTRACT

Resistance or susceptibility to T. cruzi infection is dependent on the host immunological profile. Innate immune receptors, such as Toll-like receptors (TLRs/TLR2, TLR4, TLR7, and TLR9) and Nod-like receptors (NLRs/NOD1 and NLRP3 inflammasome) are involved with the resistance against acute experimental T. cruzi infection. Here, we evaluated the impact of T. cruzi virulence on the expression of innate immune receptors and its products in mice. For that, we used six T. cruzi strains/isolates that showed low (AM64/TcIV and 3253/Tc-V), medium (PL1.10.14/TcIII and CL/TcVI), or high (Colombian/Tc-I and Y/TcII) virulence and pathogenicity to the vertebrate host and belonging to the six discrete typing units (DTUs)-TcI to TcVI. Parasitemia, mortality, and myocarditis were evaluated and correlated to the expression of TLRs, NLRs, adapter molecules, cytokines, and iNOS in myocardium by real time PCR. Cytokines (IL-1ß, IL-12, TNF-α, and IFN-γ) were quantified in sera 15 days after infection. Our data indicate that high virulent strains of T. cruzi, which generate high parasitemia, severe myocarditis, and 100% mortality in infected mice, inhibit the expression of TLR2, TLR4, TLR9, TRIF, and Myd88 transcripts, leading to a low IL-12 production, when compared to medium and low virulent T. cruzi strains. On the other hand, the high virulent T. cruzi strains induce the upregulation of NLRP3, caspase-1, IL-1ß, TNF-α, and iNOS mRNA in heart muscle, compared to low and medium virulent strains, which may contribute to myocarditis and death. Moreover, high virulent strains induce higher levels of IL-1ß and TNF-α in sera compared to less virulent parasites. Altogether the data indicate that differential TLR and NLR expression in heart muscle is correlated with virulence and pathogenicity of T cruzi strains. A better knowledge of the immunological mechanisms involved in resistance to T. cruzi infection is important to understand the natural history of Chagas disease, can lead to identification of immunological markers and/or to serve as a basis for alternative therapies.


Subject(s)
Chagas Disease , Immunity, Innate , Myocardium/immunology , Trypanosoma cruzi , Animals , Caspase 1 , Heart , Mice , Trypanosoma cruzi/pathogenicity , Virulence
5.
ACS Appl Mater Interfaces ; 13(15): 17478-17486, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33844491

ABSTRACT

In this work, we report the presence of surface-densified phases (ß-Ni5O8, γ-Ni3O4, and δ-Ni7O8) in LiNiO2 (LNO)- and LiNi0.8Al0.2O2 (LNA)-layered compounds by combined atomic level scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS). These surface phases form upon electrochemical aging at high state of charge corresponding to a fully delithiated state. A unique feature of these phases is the periodic occupancy by Ni2+ in the Li layer. This periodic Ni occupancy gives rise to extra diffraction reflections, which are qualitatively similar to those of the LiNi2O4 spinel structure, but these surface phases have a lower Ni valence state and cation content than spinel. These experimental results confirm the presence of thermodynamically stable surface phases and provide new insights into the phenomena of surface phase formation in Ni-rich layered structures.

6.
Nat Mater ; 20(6): 841-850, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33479526

ABSTRACT

Metal fluorides, promising lithium-ion battery cathode materials, have been classified as conversion materials due to the reconstructive phase transitions widely presumed to occur upon lithiation. We challenge this view by studying FeF3 using X-ray total scattering and electron diffraction techniques that measure structure over multiple length scales coupled with density functional theory calculations, and by revisiting prior experimental studies of FeF2 and CuF2. Metal fluoride lithiation is instead dominated by diffusion-controlled displacement mechanisms, and a clear topological relationship between the metal fluoride F- sublattices and that of LiF is established. Initial lithiation of FeF3 forms FeF2 on the particle's surface, along with a cation-ordered and stacking-disordered phase, A-LixFeyF3, which is structurally related to α-/ß-LiMn2+Fe3+F6 and which topotactically transforms to B- and then C-LixFeyF3, before forming LiF and Fe. Lithiation of FeF2 and CuF2 results in a buffer phase between FeF2/CuF2 and LiF. The resulting principles will aid future developments of a wider range of isomorphic metal fluorides.

7.
PLoS Negl Trop Dis ; 14(9): e0008667, 2020 09.
Article in English | MEDLINE | ID: mdl-32986710

ABSTRACT

Digestive and cardiodigestive forms of Chagas' disease are observed in 2% to 27% of the patients, depending on their geographic location, Trypanosoma cruzi strain and immunopathological responses. The aim of this work was to evaluate the role of NOD2 innate immune receptor in the pathogenesis of the digestive system in Chagas' disease. Patients with digestive form of the disease showed lower mRNA expression of NOD2, higher expression of RIP2 and α-defensin 6, compared to indeterminate form, detected by Real-time PCR in peripheral blood mononuclear cells. In addition, there was a negative correlation between the expression of NOD2 and the degree of dilation of the esophagus, sigmoid and rectum in those patients. The infection of NOD2-/- mice with T. cruzi strain isolated from the digestive patient induced a decrease in intestinal motility. Histopathological analysis of the colon and jejunum of NOD2-/- and wild type C57BL/6 animals revealed discrete inflammatory foci during the acute phase of infection. Interestingly, during the chronic phase of the infection there was inflammation and hypertrophy of the longitudinal and circular muscular layer more pronounced in the colon and jejunum from NOD2-/- animals, when compared to wild type C57BL/6 mice. Together, our results suggest that NOD2 plays a protective role against the development of digestive form of Chagas' disease.


Subject(s)
Chagas Disease/immunology , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/immunology , Nod2 Signaling Adaptor Protein/metabolism , Trypanosoma cruzi/immunology , Adolescent , Adult , Aged , Animals , Brazil , Chagas Disease/pathology , Colon/microbiology , Colon/pathology , Disease Models, Animal , Female , Humans , Immunity, Innate , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Young Adult , alpha-Defensins/genetics , alpha-Defensins/metabolism
8.
J Phys Chem Lett ; 11(6): 2106-2112, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32101006

ABSTRACT

Sensitivity to the "bulk" oxygen core orbital makes hard X-ray photoelectron spectroscopy (HAXPES) an appealing technique for studying oxygen redox candidates. Various studies have reported an additional O 1s peak (530-531 eV) at high voltages, which has been considered a direct signature of the bulk oxygen redox process. Here, we find the emergence of a 530.4 eV O 1s HAXPES peak for three model cathodes-Li2MnO3, Li-rich NMC, and NMC 442-that shows no clear link to oxygen redox. Instead, the 530.4 eV peak for these three systems is attributed to transition metal reduction and electrolyte decomposition in the near-surface region. Claims of oxygen redox relying on photoelectron spectroscopy must explicitly account for the surface sensitivity of this technique and the extent of the cathode degradation layer.

9.
Sci Rep ; 9(1): 17720, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31776363

ABSTRACT

Aluminum is a common dopant across oxide cathodes for improving the bulk and cathode-electrolyte interface (CEI) stability. Aluminum in the bulk is known to enhance structural and thermal stability, yet the exact influence of aluminum at the CEI remains unclear. To address this, we utilized a combination of X-ray photoelectron and absorption spectroscopy to identify aluminum surface environments and extent of transition metal reduction for Ni-rich LiNi0.8Co0.2-yAlyO2 (0%, 5%, or 20% Al) layered oxide cathodes tested at 4.75 V under thermal stress (60 °C). For these tests, we compared the conventional LiPF6 salt with the more thermally stable LiBF4 salt. The CEI layers are inherently different between these two electrolyte salts, particularly for the highest level of Al-doping (20%) where a thicker (thinner) CEI layer is found for LiPF6 (LiBF4). Focusing on the aluminum environment, we reveal the type of surface aluminum species are dependent on the electrolyte salt, as Al-O-F- and Al-F-like species form when using LiPF6 and LiBF4, respectively. In both cases, we find cathode-electrolyte reactions drive the formation of a protective Al-F-like barrier at the CEI in Al-doped oxide cathodes.

10.
Rio de Janeiro; s.n; 2019. xv, 104 p. ilus.
Thesis in Portuguese | LILACS | ID: biblio-1026860

ABSTRACT

A síndrome metabólica (SM) é definida como um estado pró-inflamatório de baixo grau, no qual fatores metabólicos e cardiovasculares anormais aumentam o risco de desenvolver doença cardiovascular e neuroinflamação. Eventos como o acúmulo de tecido adiposo visceral, aumento das concentrações plasmáticas de ácidos graxos livres, hipóxia tecidual e hiperatividade simpática na SM, podem contribuir para a ativação direta ou indireta dos receptores do tipo Toll (TLR), especificamente o TLR-4, considerado como um receptor envolvido em todos os componentes desta síndrome. A ativação da resposta imune inata, via TLR4 pode contribuir para este estado de inflamação crônica e pode estar relacionada com a neuroinflamação e neurodegeneração observadas na SM. Neste estudo, investigamos o papel dos receptores TLR4 na microcirculação cerebral e no desempenho cognitivo de camundongos com SM induzida por dieta hiperlipídica (HFD). O modelo de SM induzido por HFD em camundongos acarreta em alterações metabólicas, hemodinâmicas e microcirculatórias evidenciadas pela rarefação capilar, aumento do rolamento e adesão de leucócitos em vênulas pós-capilares e disfunção endotelial, que estão diretamente relacionadas ao declínio cognitivo e neuroinflamação


O mesmo modelo de SM reproduzido em camundongos que possuem uma mutação genética, que os torna deficientes para o TLR4, não gera tais alterações. Também demonstramos que a substituição da dieta hiperlipídica pela dieta normolipídica é capaz de reverter as alterações inflamatórias na microcirculação cerebral e este efeito, possivelmente, está relacionado a menor ativação do TLR4. Ainda verificamos que a ingestão de HFD por uma semana não é capaz de induzir alterações microcirculatórias e inflamatórias cerebrais nos animais controles e mutantes para o TLR4-HFD. Portanto, nossos resultados demonstram que o TLR4 está envolvido na disfunção microvascular e neuroinflamação associada à SM induzida por HFD e, possivelmente, desempenham um papel causal no desenvolvimento do declínio cognitivo. (AU)


Subject(s)
Mice , Neuroimmunomodulation , Metabolic Syndrome , Toll-Like Receptor 4
11.
PLoS Negl Trop Dis ; 12(7): e0006589, 2018 07.
Article in English | MEDLINE | ID: mdl-30044791

ABSTRACT

Chronic chagasic cardiomyopathy (CCC) is observed in 30% to 50% of the individuals infected by Trypanosoma cruzi and heart failure is the important cause of death among patients in the chronic phase of Chagas disease. Although some studies have elucidated the role of adaptive immune responses involving T and B lymphocytes in cardiac pathogenesis, the role of innate immunity receptors such as Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in CCC pathophysiology has not yet been determined. In this study, we evaluated the association among innate immune receptors (TLR1-9 and nucleotide-binding domain-like receptor protein 3/NLRP3), its adapter molecules (Myd88, TRIF, ASC and caspase-1) and cytokines (IL-1ß, IL-6, IL-12, IL-18, IL-23, TNF-α, and IFN-ß) with clinical manifestation, digestive and cardiac function in patients with different clinical forms of chronic Chagas disease. The TLR8 mRNA expression levels were enhanced in the peripheral blood mononuclear cells (PBMC) from digestive and cardiodigestive patients compared to indeterminate and cardiac patients. Furthermore, mRNA expression of IFN-ß (cytokine produced after TLR8 activation) was higher in digestive and cardiodigestive patients when compared to indeterminate. Moreover, there was a positive correlation between TLR8 and IFN-ß mRNA expression with sigmoid and rectum size. Cardiac and cardiodigestive patients presented higher TLR2, IL-12 and TNF-α mRNA expression than indeterminate and digestive patients. Moreover, cardiac patients also expressed higher levels of NLRP3, ASC and IL-1ß mRNAs than indeterminate patients. In addition, we showed a negative correlation among TLR2, IL-1ß, IL-12 and TNF-α levels with left ventricular ejection fraction, and positive correlation between NLRP3 with cardiothoracic index, and TLR2, IL-1ß and IL-12 with left ventricular mass index. Together, our data suggest that high expression of innate immune receptors in cardiac and digestive patients may induce an enhancement of cytokine expression and participate of cardiac and digestive dysfunction.


Subject(s)
Chagas Cardiomyopathy/immunology , Digestive System Diseases/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , NLR Proteins/immunology , Adult , Aged , Caspase 1/genetics , Caspase 1/immunology , Chagas Cardiomyopathy/genetics , Chagas Cardiomyopathy/parasitology , Digestive System Diseases/genetics , Digestive System Diseases/parasitology , Female , Humans , Interleukin-12/genetics , Interleukin-12/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Male , Middle Aged , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Proteins/genetics , Trypanosoma cruzi/physiology
12.
Langmuir ; 33(37): 9333-9353, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28595010

ABSTRACT

Enabling practical utilization of layered R3̅m positive electrodes near full delithiation requires an enhanced understanding of the complex electrode-electrolyte interactions that often induce failure. Using Li[Ni0.8Co0.15Al0.05]O2 (NCA) as a model layered compound, the chemical and structural stability in a strenuous thermal and electrochemical environment was explored. Operando microcalorimetry and electrochemical impedance spectroscopy identified a fingerprint for a structural decomposition and transition-metal dissolution reaction that occurs on the positive electrode at full delithiation. Surface-sensitive characterization techniques, including X-ray absorption spectroscopy and high-resolution transmission electron microscopy, measured a structural and morphological transformation of the surface and subsurface regions of NCA. Despite the bulk structural integrity being maintained, NCA surface degradation at a high state of charge induces excessive transition-metal dissolution and significant positive electrode impedance development, resulting in a rapid decrease in electrochemical performance. Additionally, the impact of electrolyte salt, positive electrode surface area, and surface Li2CO3 content on the magnitude and character of the dissolution reaction was studied.

13.
PLoS Negl Trop Dis ; 10(4): e0004669, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27115869

ABSTRACT

Ischemic strokes have been implicated as a cause of death in Chagas disease patients. Inflammation has been recognized as a key component in all ischemic processes, including the intravascular events triggered by vessel interruption, brain damage and repair. In this study, we evaluated the association between inflammatory markers and the death risk (DR) and stroke risk (SR) of patients with different clinical forms of chronic Chagas disease. The mRNA expression levels of cytokines, transcription factors expressed in the adaptive immune response (Th1, Th2, Th9, Th17, Th22 and regulatory T cell), and iNOS were analyzed by real-time PCR in peripheral blood mononuclear cells of chagasic patients who exhibited the indeterminate, cardiac, digestive and cardiodigestive clinical forms of the disease, and the levels of these transcripts were correlated with the DR and SR. Cardiac patients exhibited lower mRNA expression levels of GATA-3, FoxP3, AHR, IL-4, IL-9, IL-10 and IL-22 but exhibited higher expression of IFN-γ and TNF-α compared with indeterminate patients. Digestive patients showed similar levels of GATA-3, IL-4 and IL-10 than indeterminate patients. Cardiodigestive patients exhibited higher levels of TNF-α compared with indeterminate and digestive patients. Furthermore, we demonstrated that patients with high DR and SR exhibited lower GATA-3, FoxP3, and IL-10 expression and higher IFN-γ, TNF-α and iNOS mRNA expression than patients with low DR and SR. A negative correlation was observed between Foxp3 and IL-10 mRNA expression and the DR and SR. Moreover, TNF-α and iNOS expression was positively correlated with DR and SR. Our data suggest that an inflammatory imbalance in chronic Chagas disease patients is associated with a high DR and SR. This study provides a better understanding of the stroke pathobiology in the general population and might aid the development of therapeutic strategies for controlling the morbidity and mortality of Chagas disease.


Subject(s)
Chagas Disease/complications , Chagas Disease/mortality , Inflammation/complications , Stroke/epidemiology , Stroke/mortality , Adult , Aged , Chagas Disease/pathology , Chronic Disease , Cytokines/biosynthesis , Female , Gene Expression Profiling , Humans , Inflammation/pathology , Leukocytes, Mononuclear/immunology , Male , Middle Aged , Nitric Oxide Synthase Type II/biosynthesis , Real-Time Polymerase Chain Reaction , Risk Assessment , Survival Analysis
14.
ACS Nano ; 9(10): 10076-84, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26382877

ABSTRACT

Mixed-anion oxyfluorides (i.e., FeOxF2-x) are an appealing alternative to pure fluorides as high-capacity cathodes in lithium batteries, with enhanced cyclability via oxygen substitution. However, it is still unclear how the mixed anions impact the local phase transformation and structural stability of oxyfluorides during cycling due to the complexity of electrochemical reactions, involving both lithium intercalation and conversion. Herein, we investigated the local chemical and structural ordering in FeO0.7F1.3 at length scales spanning from single particles to the bulk electrode, via a combination of electron spectrum-imaging, magnetization, electrochemistry, and synchrotron X-ray measurements. The FeO0.7F1.3 nanoparticles retain a FeF2-like rutile structure but chemically heterogeneous, with an F-rich core covered by thin O-rich shell. Upon lithiation the O-rich rutile phase is transformed into Li-Fe-O(-F) rocksalt that has high lattice coherency with converted metallic Fe, a feature that may facilitate the local electronic and ionic transport. The O-rich rocksalt is highly stable over lithiation/delithiation and thus advantageous to maintain the integrity of the particle, and due to its predominant distribution on the surface, it is expected to prevent the catalytic interaction of Fe with electrolyte. Our findings of the structural origin of cycling stability in oxyfluorides may provide insights into developing viable high-energy electrodes for lithium batteries.

15.
ACS Nano ; 8(7): 7251-9, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-24911154

ABSTRACT

Sodium-ion batteries utilize various electrode materials derived from lithium batteries. However, the different characteristics inherent in sodium may cause unexpected cell reactions and battery performance. Thus, identifying the reactive discrepancy between sodiation and lithiation is essential for fundamental understanding and practical engineering of battery materials. Here we reveal a heterogeneous sodiation mechanism of iron fluoride (FeF2) nanoparticle electrodes by combining in situ/ex situ microscopy and spectroscopy techniques. In contrast to direct one-step conversion reaction with lithium, the sodiation of FeF2 proceeds via a regular conversion on the surface and a disproportionation reaction in the core, generating a composite structure of 1-4 nm ultrafine Fe nanocrystallites (further fused into conductive frameworks) mixed with an unexpected Na3FeF6 phase and a NaF phase in the shell. These findings demonstrate a core-shell reaction mode of the sodiation process and shed light on the mechanistic understanding extended to generic electrode materials for both Li- and Na-ion batteries.

16.
J Am Chem Soc ; 136(17): 6211-4, 2014 Apr 30.
Article in English | MEDLINE | ID: mdl-24735418

ABSTRACT

The complex coupling of atomic, chemical, and electronic transformations across multiple length scales underlies the performance of electrochemical energy storage devices. Here, the coupling of chemistry with atomic- and nanoscale structure in iron conversion electrodes is resolved by combining pair distribution function (PDF) and small-angle X-ray scattering (SAXS) analysis for a series of Fe fluorides, oxyfluorides, and oxides. The data show that the anion chemistry of the initial electrode influences the abundance of atomic defects in the Fe atomic lattice. This, in turn, is linked to different atom mobilities and propensity for particle growth. Competitive nanoparticle growth in mixed anion systems contributes to a distinct nanostructure, without the interconnected metallic nanoparticles formed for single anion systems.

17.
ACS Appl Mater Interfaces ; 6(14): 10858-69, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-24708435

ABSTRACT

Potentiostatic intermittent titration technique (PITT) was applied to FeF2, FeF3, and FeO0.67F1.33 to gain insight into the transport-related aspects of the conversion reaction by quantitative analysis of Li(+) diffusion and hysteresis. PITT derived diffusion coefficient measurements were benchmarked relative to values extracted by electrochemical impedance spectroscopy (EIS). A reverse-step PITT methodology was used to evaluate true hysteresis by eliminating nucleation induced overpotentials. This method evaluates the minimum potential hysteresis and allowed an accurate representation of the potential required to move conversion reactions forward at C/1000 rates in both lithiation and delithiation. The high resolution PITT data were also used to gain further insight into reaction mechanisms involved in the reversible conversion reactions. Physical evidence, based on pair distribution function (PDF) structural analysis, and electrochemical evidence are presented regarding a new step in the reaction during the rutile FeF2 reconversion reaction.

18.
J Am Chem Soc ; 135(10): 4070-8, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-23432753

ABSTRACT

In-depth analysis of operando X-ray pair distribution function (PDF) data is combined with Li NMR spectroscopy to gain comprehensive insights into the electrochemical reaction mechanism of high-performance iron oxyfluoride electrodes. While the full discharge capacity could be recovered upon charge, implying reversibility of the electrochemical reaction, the atomic structure of the electrode formed after cycling (discharge-charge) differs from the pristine uncycled electrode material. Instead, the "active" electrode that forms upon cycling is a nanocomposite of an amorphous rutile phase and a nanoscale rock salt phase. Bond valence sum analysis, based on the precise structural parameters (bond lengths and coordination number) extracted from the in situ PDF data, suggests that anion partitioning occurs during the electrochemical reaction, with the rutile phase being F-rich and the rock salt phase being O-rich. The F- and O-rich phases react sequentially; Fe in a F-rich environment reacts preferentially during both discharge and charge.


Subject(s)
Ferrous Compounds/chemistry , Iron/chemistry , Anions/chemistry , Electrodes , Lithium/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Monte Carlo Method , Quantum Theory
19.
Nat Commun ; 3: 1201, 2012.
Article in English | MEDLINE | ID: mdl-23149745

ABSTRACT

Expectations for the next generation of lithium batteries include greater energy and power densities along with a substantial increase in both calendar and cycle life. Developing new materials to meet these goals requires a better understanding of how electrodes function by tracking physical and chemical changes of active components in a working electrode. Here we develop a new, simple in-situ electrochemical cell for the transmission electron microscope and use it to track lithium transport and conversion in FeF(2) nanoparticles by nanoscale imaging, diffraction and spectroscopy. In this system, lithium conversion is initiated at the surface, sweeping rapidly across the FeF(2) particles, followed by a gradual phase transformation in the bulk, resulting in 1-3 nm iron crystallites mixed with amorphous LiF. The real-time imaging reveals a surprisingly fast conversion process in individual particles (complete in a few minutes), with a morphological evolution resembling spinodal decomposition. This work provides new insights into the inter- and intra-particle lithium transport and kinetics of lithium conversion reactions, and may help to pave the way to develop high-energy conversion electrodes for lithium-ion batteries.

20.
J Am Chem Soc ; 133(46): 18828-36, 2011 Nov 23.
Article in English | MEDLINE | ID: mdl-21894971

ABSTRACT

Materials that undergo a conversion reaction with lithium (e.g., metal fluorides MF(2): M = Fe, Cu, ...) often accommodate more than one Li atom per transition-metal cation, and are promising candidates for high-capacity cathodes for lithium ion batteries. However, little is known about the mechanisms involved in the conversion process, the origins of the large polarization during electrochemical cycling, and why some materials are reversible (e.g., FeF(2)) while others are not (e.g., CuF(2)). In this study, we investigated the conversion reaction of binary metal fluorides, FeF(2) and CuF(2), using a series of local and bulk probes to better understand the mechanisms underlying their contrasting electrochemical behavior. X-ray pair-distribution-function and magnetization measurements were used to determine changes in short-range ordering, particle size and microstructure, while high-resolution transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS) were used to measure the atomic-level structure of individual particles and map the phase distribution in the initial and fully lithiated electrodes. Both FeF(2) and CuF(2) react with lithium via a direct conversion process with no intercalation step, but there are differences in the conversion process and final phase distribution. During the reaction of Li(+) with FeF(2), small metallic iron nanoparticles (<5 nm in diameter) nucleate in close proximity to the converted LiF phase, as a result of the low diffusivity of iron. The iron nanoparticles are interconnected and form a bicontinuous network, which provides a pathway for local electron transport through the insulating LiF phase. In addition, the massive interface formed between nanoscale solid phases provides a pathway for ionic transport during the conversion process. These results offer the first experimental evidence explaining the origins of the high lithium reversibility in FeF(2). In contrast to FeF(2), no continuous Cu network was observed in the lithiated CuF(2); rather, the converted Cu segregates to large particles (5-12 nm in diameter) during the first discharge, which may be partially responsible for the lack of reversibility in the CuF(2) electrode.

SELECTION OF CITATIONS
SEARCH DETAIL
...