Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 124(16): 3220-3227, 2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32233369

ABSTRACT

Negative ion formation in electron transfer experiments from fast neutral potassium (K) atom collisions with neutral tetrachloromethane (CCl4) molecules has been investigated in the laboratory frame range of 8-1000 eV. Comprehensive calculations on the electronic structure were performed for CCl4 in the presence of a potassium atom and used to help analyze the lowest unoccupied molecular orbitals participating in the collision process. Additionally, K+ energy loss produced in the forward direction has served to further our knowledge on the electronic state spectroscopy of CCl4. A vertical electron affinity of -0.79 ± 0.20 eV has been obtained and assigned to a purely repulsive transition from CCl4 ground state to the 2T2 state of the temporary negative ion yielding Cl- formation. Other features in the energy loss spectrum were observed for the first time and related to Cl2-, CCl2-, and CCl3- formation. Special attention is also given to the unresolved feature corresponding to a positive electron affinity of 0.24 ± 0.2 eV, assigned to a vibrationally hot transition from CCl4 ground state into the triply degenerate 2T2 excited state of the negative ion. The combined time-of-flight mass spectrometry together with K+ energy loss data represents the most comprehensive assignment of the tetrachloromethane anion yields and the role of CCl4 electronic states in collision induced dissociation to date.

2.
Int J Heat Mass Transf ; 62: 153-162, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-24511152

ABSTRACT

In this work we derive an analytical solution given by Bessel series to the transient and one-dimensional (1D) bioheat transfer equation in a multi-layer region with spatially dependent heat sources. Each region represents an independent biological tissue characterized by temperature-invariant physiological parameters and a linearly temperature dependent metabolic heat generation. Moreover, 1D Cartesian, cylindrical or spherical coordinates are used to define the geometry and temperature boundary conditions of first, second and third kinds are assumed at the inner and outer surfaces. We present two examples of clinical applications for the developed solution. In the first one, we investigate two different heat source terms to simulate the heating in a tumor and its surrounding tissue, induced during a magnetic fluid hyperthermia technique used for cancer treatment. To obtain an accurate analytical solution, we determine the error associated with the truncated Bessel series that defines the transient solution. In the second application, we explore the potential of this model to study the effect of different environmental conditions in a multi-layered human head model (brain, bone and scalp). The convective heat transfer effect of a large blood vessel located inside the brain is also investigated. The results are further compared with a numerical solution obtained by the Finite Element Method and computed with COMSOL Multiphysics v4.1©.

SELECTION OF CITATIONS
SEARCH DETAIL
...