Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
J Cell Physiol ; 239(4): e31204, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38419397

ABSTRACT

Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are protein- and lipid-enriched hubs that mediate interorganellar communication by contributing to the dynamic transfer of Ca2+, lipid, and other metabolites between these organelles. Defective MERCs are associated with cellular oxidative stress, neurodegenerative disease, and cardiac and skeletal muscle pathology via mechanisms that are poorly understood. We previously demonstrated that skeletal muscle-specific knockdown (KD) of the mitochondrial fusion mediator optic atrophy 1 (OPA1) induced ER stress and correlated with an induction of Mitofusin-2, a known MERC protein. In the present study, we tested the hypothesis that Opa1 downregulation in skeletal muscle cells alters MERC formation by evaluating multiple myocyte systems, including from mice and Drosophila, and in primary myotubes. Our results revealed that OPA1 deficiency induced tighter and more frequent MERCs in concert with a greater abundance of MERC proteins involved in calcium exchange. Additionally, loss of OPA1 increased the expression of activating transcription factor 4 (ATF4), an integrated stress response (ISR) pathway effector. Reducing Atf4 expression prevented the OPA1-loss-induced tightening of MERC structures. OPA1 reduction was associated with decreased mitochondrial and sarcoplasmic reticulum, a specialized form of ER, calcium, which was reversed following ATF4 repression. These data suggest that mitochondrial stress, induced by OPA1 deficiency, regulates skeletal muscle MERC formation in an ATF4-dependent manner.


Subject(s)
Activating Transcription Factor 4 , Neurodegenerative Diseases , Animals , Mice , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Lipids , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Neurodegenerative Diseases/pathology , Male , Mice, Inbred C57BL , Cells, Cultured , GTP Phosphohydrolases/metabolism
2.
Sci Rep ; 14(1): 1563, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38238383

ABSTRACT

In brown adipose tissue (BAT), short-term cold exposure induces the activating transcription factor 4 (ATF4), and its downstream target fibroblast growth factor 21 (FGF21). Induction of ATF4 in BAT in response to mitochondrial stress is required for thermoregulation, partially by increasing FGF21 expression. In the present study, we tested the hypothesis that Atf4 and Fgf21 induction in BAT are both required for BAT thermogenesis under physiological stress by generating mice selectively lacking either Atf4 (ATF4 BKO) or Fgf21 (FGF21 BKO) in UCP1-expressing adipocytes. After 3 days of cold exposure, core body temperature was significantly reduced in ad-libitum-fed ATF4 BKO mice, which correlated with Fgf21 downregulation in brown and beige adipocytes, and impaired browning of white adipose tissue. Conversely, despite having reduced browning, FGF21 BKO mice had preserved core body temperature after cold exposure. Mechanistically, ATF4, but not FGF21, regulates amino acid import and metabolism in response to cold, likely contributing to BAT thermogenic capacity under ad libitum-fed conditions. Importantly, under fasting conditions, both ATF4 and FGF21 were required for thermogenesis in cold-exposed mice. Thus, ATF4 regulates BAT thermogenesis under fed conditions likely in a FGF21-independent manner, in part via increased amino acid uptake and metabolism.


Subject(s)
Activating Transcription Factor 4 , Fibroblast Growth Factors , Thermogenesis , Animals , Mice , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Amino Acids/metabolism , Cold Temperature , Mice, Inbred C57BL , Thermogenesis/genetics , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
3.
Diabetes ; 73(2): 151-161, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38241507

ABSTRACT

Mitochondria undergo repeated cycles of fusion and fission that regulate their size and shape by a process known as mitochondrial dynamics. Numerous studies have revealed the importance of this process in maintaining mitochondrial health and cellular homeostasis, particularly in highly metabolically active tissues such as skeletal muscle and the heart. Here, we review the literature on the relationship between mitochondrial dynamics and the pathophysiology of type 2 diabetes and cardiovascular disease (CVD). Importantly, we emphasize divergent outcomes resulting from downregulating distinct mitochondrial dynamics proteins in various tissues. This review underscores compensatory mechanisms and adaptive pathways that offset potentially detrimental effects, resulting instead in improved metabolic health. Finally, we offer a perspective on potential therapeutic implications of modulating mitochondrial dynamics proteins for treatment of diabetes and CVD.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Humans , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Diabetes Mellitus, Type 2/metabolism , Mitochondrial Dynamics , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Mitochondrial Proteins/metabolism
4.
Front Biosci (Landmark Ed) ; 28(11): 312, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38062821

ABSTRACT

BACKGROUND: Obesity is a worldwide concern due to its global rapid expansion and remarkable impact on individual's health by predisposing to several other diseases. About twice as many women as men suffer from severe obesity and, in fact, there are stages in a woman's life when weight gain and adiposity can result in greater damage to health. For example, obesity triples the chance of a woman developing gestational diabetes. Many hormones promote the metabolic adaptations of pregnancy, including progesterone, whose role in female obesity is still not well known despite being involved in many physiological and pathological processes. METHODS: Here we investigated whether progesterone treatment at low dose can worsen the glucose metabolism and the morpho functional aspects of adipose tissue and pancreas in obese females. Mice were assigned into four groups: normocaloric diet control (NO-CO), high-fat and -fructose diet control (HFF-CO), normocaloric diet plus progesterone (NO-PG) and high-fat and -fructose diet plus progesterone (HFF-PG) for 10 weeks. Infusion of progesterone (0.25 mg/kg/day) was done by osmotic minipump in the last 21 days of protocol. RESULTS: Animals fed a hypercaloric diet exhibited obesity with increased body weight (p < 0.0001), adipocyte hypertrophy (p < 0.0001), hyperglycemia (p = 0.03), and glucose intolerance (p = 0.001). HFF-CO and HFF-PG groups showed lower adiponectin concentration (p < 0.0001) and glucose-stimulated insulin secretion (p = 0.03), without differences in islet size. Progesterone attenuated glucose intolerance in the HFF-PG group (p = 0.03), however, did not change morphology or endocrine function of adipose tissue and pancreatic islets. CONCLUSIONS: Taken together, our results showed that low dose of progesterone does not worsen the effects of hypercaloric diet in glycemic metabolism, morphology and function of adipose tissue and pancreatic islets in female animals. These results may improve the understanding of the mechanisms underlying the pathogenesis of obesity in women and eventually open new avenues for therapeutic strategies and better comprehension of the interactions between progesterone effects and obesity.


Subject(s)
Glucose Intolerance , Islets of Langerhans , Humans , Male , Pregnancy , Female , Mice , Animals , Progesterone , Glucose Intolerance/complications , Glucose Intolerance/pathology , Mice, Obese , Diet, High-Fat/adverse effects , Obesity/metabolism , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Adipose Tissue/metabolism , Weight Gain , Fructose , Mice, Inbred C57BL , Insulin/metabolism
5.
Front Endocrinol (Lausanne) ; 14: 1264530, 2023.
Article in English | MEDLINE | ID: mdl-37818094

ABSTRACT

Various models of mitochondrial stress result in induction of the stress-responsive cytokines fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15). This is an adaptive mechanism downstream of the mitochondrial integrated stress response frequently associated with improvements in systemic metabolic health. Both FGF21 and GDF15 have been shown to modulate energy balance and glucose homeostasis, and their pharmacological administration leads to promising beneficial effects against obesity and associated metabolic diseases in pre-clinical models. Furthermore, endogenous upregulation of FGF21 and GDF15 is associated with resistance to diet-induced obesity (DIO), improved glucose homeostasis and increased insulin sensitivity. In this review, we highlight several studies on transgenic mouse models of mitochondrial stress and will compare the specific roles played by FGF21 and GDF15 on the systemic metabolic adaptations reported in these models.


Subject(s)
Growth Differentiation Factor 15 , Obesity , Mice , Animals , Growth Differentiation Factor 15/genetics , Obesity/metabolism , Fibroblast Growth Factors/metabolism , Mice, Transgenic , Glucose/metabolism
6.
Elife ; 122023 10 11.
Article in English | MEDLINE | ID: mdl-37819027

ABSTRACT

We previously reported that mice lacking the protein optic atrophy 1 (OPA1 BKO) in brown adipose tissue (BAT) display induction of the activating transcription factor 4 (ATF4), which promotes fibroblast growth factor 21 (FGF21) secretion as a batokine. FGF21 increases metabolic rates under baseline conditions but is dispensable for the resistance to diet-induced obesity (DIO) reported in OPA1 BKO mice (Pereira et al., 2021). To determine alternative mediators of this phenotype, we performed transcriptome analysis, which revealed increased levels of growth differentiation factor 15 (GDF15), along with increased protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) levels in BAT. To investigate whether ATF4 induction was mediated by PERK and evaluate the contribution of GDF15 to the resistance to DIO, we selectively deleted PERK or GDF15 in OPA1 BKO mice. Mice with reduced OPA1 and PERK levels in BAT had preserved ISR activation. Importantly, simultaneous deletion of OPA1 and GDF15 partially reversed the resistance to DIO and abrogated the improvements in glucose tolerance. Furthermore, GDF15 was required to improve cold-induced thermogenesis in OPA1 BKO mice. Taken together, our data indicate that PERK is dispensable to induce the ISR, but GDF15 contributes to the resistance to DIO, and is required for glucose homeostasis and thermoregulation in OPA1 BKO mice by increasing energy expenditure.


Subject(s)
Adipocytes, Brown , Growth Differentiation Factor 15 , Animals , Mice , Activating Transcription Factor 4/metabolism , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Glucose/metabolism , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Mice, Inbred C57BL , Mice, Knockout , Obesity/genetics , Thermogenesis/physiology
8.
Adv Biol (Weinh) ; 7(10): e2200202, 2023 10.
Article in English | MEDLINE | ID: mdl-37140138

ABSTRACT

Mitochondria respond to metabolic demands of the cell and to incremental damage, in part, through dynamic structural changes that include fission (fragmentation), fusion (merging of distinct mitochondria), autophagic degradation (mitophagy), and biogenic interactions with the endoplasmic reticulum (ER). High resolution study of mitochondrial structural and functional relationships requires rapid preservation of specimens to reduce technical artifacts coupled with quantitative assessment of mitochondrial architecture. A practical approach for assessing mitochondrial fine structure using two dimensional and three dimensional high-resolution electron microscopy is presented, and a systematic approach to measure mitochondrial architecture, including volume, length, hyperbranching, cristae morphology, and the number and extent of interaction with the ER is described. These methods are used to assess mitochondrial architecture in cells and tissue with high energy demand, including skeletal muscle cells, mouse brain tissue, and Drosophila muscles. The accuracy of assessment is validated in cells and tissue with deletion of genes involved in mitochondrial dynamics.


Subject(s)
Mitochondria , Mitochondrial Membranes , Mice , Animals , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Microscopy, Electron, Scanning , Cells, Cultured
9.
Adv Biol (Weinh) ; 7(6): e2200221, 2023 06.
Article in English | MEDLINE | ID: mdl-36869426

ABSTRACT

Various intracellular degradation organelles, including autophagosomes, lysosomes, and endosomes, work in tandem to perform autophagy, which is crucial for cellular homeostasis. Altered autophagy contributes to the pathophysiology of various diseases, including cancers and metabolic diseases. This paper aims to describe an approach to reproducibly identify and distinguish subcellular structures involved in macroautophagy. Methods are provided that help avoid common pitfalls. How to distinguish between lysosomes, lipid droplets, autolysosomes, autophagosomes, and inclusion bodies are also discussed. These methods use transmission electron microscopy (TEM), which is able to generate nanometer-scale micrographs of cellular degradation components in a fixed sample. Serial block face-scanning electron microscopy is also used to visualize the 3D morphology of degradation machinery using the Amira software. In addition to TEM and 3D reconstruction, other imaging techniques are discussed, such as immunofluorescence and immunogold labeling, which can be used to classify cellular organelles, reliably and accurately. Results show how these methods may be used to accurately quantify cellular degradation machinery under various conditions, such as treatment with the endoplasmic reticulum stressor thapsigargin or ablation of the dynamin-related protein 1.


Subject(s)
Imaging, Three-Dimensional , Lysosomes , Microscopy, Electron, Transmission , Lysosomes/metabolism , Lysosomes/ultrastructure , Autophagy/physiology , Endoplasmic Reticulum
10.
bioRxiv ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-36945390

ABSTRACT

In brown adipose tissue (BAT), short-term cold exposure induces the activating transcription factor 4 (ATF4), and its downstream target fibroblast growth factor 21 (FGF21). Induction of ATF4 in BAT in response to mitochondrial stress is required for thermoregulation, partially via upregulation of FGF21. In the present study, we tested the hypothesis that Atf4 and Fgf21 induction in BAT are both required for BAT thermogenesis by generating mice selectively lacking either Atf4 ( ATF4 BKO ) or Fgf21 (FGF21 BKO) in UCP1-expressing adipocytes. After 3 days of cold exposure, core body temperature was significantly reduced in ad-libitum -fed ATF4 BKO mice, which correlated with Fgf21 downregulation in brown and beige adipocytes, and impaired browning of white adipose tissue (WAT). Conversely, despite having reduced browning, FGF21 BKO mice had preserved core body temperature after cold exposure. Mechanistically, ATF4, but not FGF21, regulates amino acid import and metabolism in response to cold, likely contributing to BAT thermogenic capacity under ad libitum -fed conditions. Importantly, under fasting conditions, both ATF4 and FGF21 were required for thermogenesis in cold-exposed mice. Thus, ATF4 regulates BAT thermogenesis by activating amino acid metabolism in BAT in a FGF21-independent manner.

11.
Diabetes ; 71(12): 2572-2583, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36170659

ABSTRACT

Mitochondria play a vital role in white adipose tissue (WAT) homeostasis including adipogenesis, fatty acid synthesis, and lipolysis. We recently reported that the mitochondrial fusion protein optic atrophy 1 (OPA1) is required for induction of fatty acid oxidation and thermogenic activation in brown adipocytes. In the current study we investigated the role of OPA1 in WAT function in vivo. We generated mice with constitutive or inducible knockout of OPA1 selectively in adipocytes. Studies were conducted under baseline conditions, at thermoneutrality, following high-fat feeding or during cold exposure. OPA1 deficiency reduced mitochondrial respiratory capacity in white adipocytes, impaired lipolytic signaling, repressed expression of de novo lipogenesis and triglyceride synthesis pathways, and promoted adipose tissue senescence and inflammation. Reduced WAT mass was associated with hepatic triglycerides accumulation and glucose intolerance. Moreover, mice deficient for OPA1 in adipocytes had impaired adaptive thermogenesis and reduced cold-induced browning of subcutaneous WAT and were completely resistant to diet-induced obesity. In conclusion, OPA1 expression and function in adipocytes are essential for adipose tissue expansion, lipid biosynthesis, and fatty acid mobilization of WAT and brown adipocytes and for thermogenic activation of brown and beige adipocytes.


Subject(s)
Adipose Tissue, White , Lipid Metabolism , Animals , Mice , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Fatty Acids/metabolism , Lipid Metabolism/genetics , Mice, Inbred C57BL , Mitochondrial Proteins/metabolism , Thermogenesis/genetics , Triglycerides/metabolism , Cold Temperature
12.
Arch Physiol Biochem ; : 1-10, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34915796

ABSTRACT

The effects of high-fat-associated kidney damage in humans are not completely elucidated. Animal experiments are essential to understanding the mechanisms underlying human diseases. This systematic review aimed to compile evidence of the role of a high-fat diet during the development of renal lipotoxicity and fibrosis of Wistar rats to understand whether this is a satisfactory model for the study of high fat-induced kidney damage. We conducted systematic searches in PUBMED, EMBASE, Lilacs, and Web of Science databases from inception until May 2021. The risk of bias was assessed using SYRCLE toll. Two reviewers independently screened abstracts and reviewed full-text articles. A total of 11 studies were included. The damage varied depending on the age and sex of the animals, time of protocol, and amount of fat in the diet. In conclusion, the Wistar rat is an adequate animal model to assess the effects of a high-fat diet on the kidneys.HighlightsA high-fat diet may promote kidney damage in Wistar rats.Wistar rat is efficient as an animal model to study high-fat-induced kidney damage.The effect of the diet depends on the fat amount, consumption time, and animal age.

13.
Front Endocrinol (Lausanne) ; 12: 772914, 2021.
Article in English | MEDLINE | ID: mdl-34970223

ABSTRACT

Obesity is associated with increased risk of several chronic diseases and the loss of disease-free years, which has increased the focus of much research for the discovery of therapy to combat it. Under healthy conditions, women tend to store more fat in subcutaneous deposits. However, this sexual dimorphism tends to be lost in the presence of comorbidities, such as type 2 diabetes mellitus (T2DM). Aerobic physical exercise (APE) has been applied in the management of obesity, however, is still necessary to better understand the effects of APE in obese female. Thus, we investigated the effect of APE on body weight, adiposity, exercise tolerance and glucose metabolism in female ob/ob mice. Eight-weeks-old female wild-type C57BL/6J and leptin-deficient ob/ob mice (Lepob) were distributed into three groups: wild-type sedentary group (Wt; n = 6), leptin-deficient sedentary group (LepobS; n = 5) and leptin-deficient trained group (LepobT; n = 8). The LepobT mice were subjected to 8 weeks of aerobic physical exercise (APE) at 60% of the maximum velocity achieved in the running capacity test. The APE had no effect in attenuating body weight gain, and did not reduce subcutaneous and retroperitoneal white adipose tissue (SC-WAT and RP-WAT, respectively) and interscapular brown adipose tissue (iBAT) weights. The APE neither improved glucose intolerance nor insulin resistance in the LepobT group. Also, the APE did not reduce the diameter or the area of RP-WAT adipocytes, but the APE reduced the diameter and the area of SC-WAT adipocytes, which was associated with lower fasting glycemia and islet/pancreas area ratio in the LepobT group. In addition, the APE increased exercise tolerance and this response was also associated with lower fasting glycemia in the LepobT group. In conclusion, starting APE at a later age with a more severe degree of obesity did not attenuate the excessive body weight gain, however the APE promoted benefits that can improve the female health, and for this reason it should be recommended as a non-pharmacological therapy for obesity.


Subject(s)
Blood Glucose , Body Weight/physiology , Exercise Tolerance/physiology , Obesity/physiopathology , Physical Conditioning, Animal/physiology , Animals , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/physiopathology , Female , Mice , Obesity/blood
14.
Cells ; 10(9)2021 08 24.
Article in English | MEDLINE | ID: mdl-34571826

ABSTRACT

Transmission electron microscopy (TEM) is widely used as an imaging modality to provide high-resolution details of subcellular components within cells and tissues. Mitochondria and endoplasmic reticulum (ER) are organelles of particular interest to those investigating metabolic disorders. A straightforward method for quantifying and characterizing particular aspects of these organelles would be a useful tool. In this protocol, we outline how to accurately assess the morphology of these important subcellular structures using open source software ImageJ, originally developed by the National Institutes of Health (NIH). Specifically, we detail how to obtain mitochondrial length, width, area, and circularity, in addition to assessing cristae morphology and measuring mito/endoplasmic reticulum (ER) interactions. These procedures provide useful tools for quantifying and characterizing key features of sub-cellular morphology, leading to accurate and reproducible measurements and visualizations of mitochondria and ER.


Subject(s)
Microscopy, Electron, Transmission/methods , Animals , Cells, Cultured , Endoplasmic Reticulum/physiology , Male , Mice, Inbred C57BL , Mitochondria/physiology , Mitochondrial Membranes/physiology , Software
15.
FASEB J ; 35(10): e21933, 2021 10.
Article in English | MEDLINE | ID: mdl-34555201

ABSTRACT

In obesity, skeletal muscle mitochondrial activity changes to cope with increased nutrient availability. Autophagy has been proposed as an essential mechanism involved in the regulation of mitochondrial metabolism. Still, the contribution of autophagy to mitochondrial adaptations in skeletal muscle during obesity is unknown. Here, we show that in response to high-fat diet (HFD) feeding, distinct skeletal muscles in mice exhibit differentially regulated autophagy that may modulate mitochondrial activity. We observed that after 4 and 40 weeks of high-fat diet feeding, OXPHOS subunits and mitochondrial DNA content increased in the oxidative soleus muscle. However, in gastrocnemius muscle, which has a mixed fiber-type composition, the mitochondrial mass increased only after 40 weeks of HFD feeding. Interestingly, fatty acid-supported mitochondrial respiration was enhanced in gastrocnemius, but not in soleus muscle after a 4-week HFD feeding. This increased metabolic profile in gastrocnemius was paralleled by preserving autophagy flux, while autophagy flux in soleus was reduced. To determine the role of autophagy in this differential response, we used an autophagy-deficient mouse model with partial deletion of Atg7 specifically in skeletal muscle (SkM-Atg7+/- mice). We observed that Atg7 reduction resulted in diminished autophagic flux in skeletal muscle, alongside blunting the HFD-induced increase in fatty acid-supported mitochondrial respiration observed in gastrocnemius. Remarkably, SkM-Atg7+/- mice did not present increased mitochondria accumulation. Altogether, our results show that HFD triggers specific mitochondrial adaptations in skeletal muscles with different fiber type compositions, and that Atg7-mediated autophagy modulates mitochondrial respiratory capacity but not its content in response to an obesogenic diet.


Subject(s)
Autophagy , Diet, High-Fat , Mitochondria, Muscle/metabolism , Muscle, Skeletal/cytology , Animals , Autophagy-Related Protein 7/deficiency , Autophagy-Related Protein 7/genetics , Cell Respiration , Fatty Acids/metabolism , Male , Mice , Obesity/genetics , Obesity/metabolism , Obesity/prevention & control , Oxidation-Reduction
16.
Elife ; 102021 05 04.
Article in English | MEDLINE | ID: mdl-33944779

ABSTRACT

Adrenergic stimulation of brown adipocytes alters mitochondrial dynamics, including the mitochondrial fusion protein optic atrophy 1 (OPA1). However, direct mechanisms linking OPA1 to brown adipose tissue (BAT) physiology are incompletely understood. We utilized a mouse model of selective OPA1 deletion in BAT (OPA1 BAT KO) to investigate the role of OPA1 in thermogenesis. OPA1 is required for cold-induced activation of thermogenic genes in BAT. Unexpectedly, OPA1 deficiency induced fibroblast growth factor 21 (FGF21) as a BATokine in an activating transcription factor 4 (ATF4)-dependent manner. BAT-derived FGF21 mediates an adaptive response by inducing browning of white adipose tissue, increasing resting metabolic rates, and improving thermoregulation. However, mechanisms independent of FGF21, but dependent on ATF4 induction, promote resistance to diet-induced obesity in OPA1 BAT KO mice. These findings uncover a homeostatic mechanism of BAT-mediated metabolic protection governed in part by an ATF4-FGF21 axis, which is activated independently of BAT thermogenic function.


Subject(s)
Adipose Tissue, Brown/metabolism , Body Temperature Regulation/genetics , Fibroblast Growth Factors/metabolism , GTP Phosphohydrolases/genetics , Gene Deletion , Adipocytes, Brown/physiology , Adipose Tissue, White/physiology , Animals , Female , Fibroblast Growth Factors/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/genetics
17.
Cells ; 11(1)2021 12 27.
Article in English | MEDLINE | ID: mdl-35011629

ABSTRACT

High-resolution 3D images of organelles are of paramount importance in cellular biology. Although light microscopy and transmission electron microscopy (TEM) have provided the standard for imaging cellular structures, they cannot provide 3D images. However, recent technological advances such as serial block-face scanning electron microscopy (SBF-SEM) and focused ion beam scanning electron microscopy (FIB-SEM) provide the tools to create 3D images for the ultrastructural analysis of organelles. Here, we describe a standardized protocol using the visualization software, Amira, to quantify organelle morphologies in 3D, thereby providing accurate and reproducible measurements of these cellular substructures. We demonstrate applications of SBF-SEM and Amira to quantify mitochondria and endoplasmic reticulum (ER) structures.


Subject(s)
Algorithms , Imaging, Three-Dimensional , Microscopy, Electron, Scanning , Organelles/ultrastructure , Animals , Drosophila , Endoplasmic Reticulum , GTP Phosphohydrolases/deficiency , GTP Phosphohydrolases/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/ultrastructure , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/ultrastructure , Muscle, Skeletal/ultrastructure
18.
Diabetes ; 69(10): 2094-2111, 2020 10.
Article in English | MEDLINE | ID: mdl-32366681

ABSTRACT

Cardiac glucose uptake and oxidation are reduced in diabetes despite hyperglycemia. Mitochondrial dysfunction contributes to heart failure in diabetes. It is unclear whether these changes are adaptive or maladaptive. To directly evaluate the relationship between glucose delivery and mitochondrial dysfunction in diabetic cardiomyopathy, we generated transgenic mice with inducible cardiomyocyte-specific expression of the GLUT4. We examined mice rendered hyperglycemic following low-dose streptozotocin prior to increasing cardiomyocyte glucose uptake by transgene induction. Enhanced myocardial glucose in nondiabetic mice decreased mitochondrial ATP generation and was associated with echocardiographic evidence of diastolic dysfunction. Increasing myocardial glucose delivery after short-term diabetes onset exacerbated mitochondrial oxidative dysfunction. Transcriptomic analysis revealed that the largest changes, driven by glucose and diabetes, were in genes involved in mitochondrial function. This glucose-dependent transcriptional repression was in part mediated by O-GlcNAcylation of the transcription factor Sp1. Increased glucose uptake induced direct O-GlcNAcylation of many electron transport chain subunits and other mitochondrial proteins. These findings identify mitochondria as a major target of glucotoxicity. They also suggest that reduced glucose utilization in diabetic cardiomyopathy might defend against glucotoxicity and caution that restoring glucose delivery to the heart in the context of diabetes could accelerate mitochondrial dysfunction by disrupting protective metabolic adaptations.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Animals , Diabetic Cardiomyopathies/genetics , Fatty Acids , Glucose , Mice , Mitochondria , Myocardium
20.
Front Nutr ; 6: 60, 2019.
Article in English | MEDLINE | ID: mdl-31131281

ABSTRACT

Aim: We investigated the kidney morphofunctional consequences of high-fat diet intake since post-weaning in adult rats. Main Methods: Male Wistar rats were divided into two groups: ND (normal diet; n = 10) and HD (high-fat diet; n = 10). The high-fat diet was introduced post-weaned and animals were followed for 8 weeks. Key Findings: HD group did not change body weight gain even though food consumption has decreased with no changes in caloric consumption. The HD group showed glucose intolerance and insulin resistance. The glomerular filtration rate (GFR) was decreased in vivo (ND: 2.8 ± 1.01; HD: 1.1 ± 0.14 ml/min) and in the isolated perfusion method (34% of decrease). Renal histological analysis showed a retraction in glomeruli and an increase in kidney lipid deposition (ND: 1.5 ± 0.17 HD: 5.9 ± 0.06%). Furthermore, the high-fat diet consumption increased the pro-inflammatory cytokines IL-6 (ND: 1,276 ± 203; HD: 1,982 ± 47 pg/mL/mg) and IL-1b (ND: 97 ± 12 HD: 133 ± 5 pg/mL/mg) without changing anti-inflammatory cytokine IL-10. Significance: Our study provides evidence that high-fat diet consumption leads to renal lipid accumulation, increases inflammatory cytokines, induces glomeruli retraction, and renal dysfunction. These damages observed in the kidney could be associated with an increased risk to advanced CKD in adulthood suggesting that reduction of high-fat ingestion during an early period of life can prevent metabolic disturbances and renal lipotoxicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...