Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 554, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323259

ABSTRACT

Feeding drug residue-containing milk to calves is common worldwide and no information is currently available on the impact on the functional profile of the fecal microbiota. Our objective was to characterize the functional profile of the fecal microbiota of preweaned dairy calves fed raw milk with residual concentrations of antimicrobials commonly found in waste milk from birth to weaning. Calves were assigned to a controlled feeding trial being fed milk with no drug residues or milk with antibiotic residues. Fecal samples collected from each calf once a week starting at birth, prior to the first feeding in the trial, until 6 weeks of age. Antibiotic residues resulted in a significant difference in relative abundance of microbial cell functions, especially with genes linked with stress response, regulation and cell signaling, and nitrogen metabolism. These changes could directly impacts selection and dissemination of virulence and antimicrobial. Our data also identified a strong association between age in weeks and abundance of Resistance to Antibiotics and Toxic Compounds. Findings from this study support the hypothesis that drug residues, even at very low concentrations, impact the gut microbiota of calves and result in changes in the functional profile of microbial populations.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cattle/physiology , Drug Residues/pharmacology , Gastrointestinal Microbiome/drug effects , Milk/chemistry , Animal Nutritional Physiological Phenomena , Animals , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/analysis , Drug Residues/adverse effects , Drug Residues/analysis , Female , Male
2.
PLoS One ; 10(12): e0145485, 2015.
Article in English | MEDLINE | ID: mdl-26710101

ABSTRACT

Probiotics are a promising alternative to improve food animal productivity and health. However, scientific evidence that specific microbes can be used to benefit animal health and performance is limited. The objective of this study was to evaluate the effects of administering a live culture of Faecalibacterium prausnitzii to newborn dairy calves on subsequent growth, health, and fecal microbiome. Initially, a safety trial was conducted using 30 newborn bull calves to assess potential adverse effects of the oral and rectal administration of F. prausnitzii to neonatal calves. No adverse reactions, such as increased body temperature or heart and respiratory rates, were observed after the administration of the treatments. All calves survived the experimental period, and there was no difference in fecal consistency score, attitude, appetite or dehydration between the treatment groups. The rectal route was not an efficient practice while the oral route ensures that the full dose is administered to the treated calves. Subsequently, a randomized field trial was completed in a commercial farm with preweaned calves. A total of 554 Holstein heifers were assigned to one of two treatment groups: treated calves (FPTRT) and non-treated calves (control). Treated calves received two oral doses of F. prausnitzii, one at treatment assignment (1st week) and another one week later. The FPTRT group presented significantly lower incidence of severe diarrhea (3.1%) compared with the control group (6.8%). Treated calves also had lower mortality rate associated with severe diarrhea (1.5%) compared to control calves (4.4%). Furthermore, FPTRT calves gained significantly more weight, 4.4 kg over the preweaning period, than controls calves. The relative abundance of F. prausnitzii in the fecal microbiota was significantly higher in the 3rd and 5th weeks of life of FPTRT calves than of the control calves, as revealed by sequencing of the 16S rRNA gene. Our findings showed that oral administration of F. prausnitzii improves gastrointestinal health and growth of preweaned calves, supporting its use as a potential probiotic.


Subject(s)
Cattle Diseases/microbiology , Cattle Diseases/mortality , Cattle/microbiology , Clostridiales/physiology , Dairying , Diarrhea/veterinary , Weight Gain , Administration, Oral , Administration, Rectal , Animals , Cattle/physiology , Cattle Diseases/physiopathology , Diarrhea/microbiology , Diarrhea/mortality , Diarrhea/physiopathology , Feces/microbiology , Incidence , Microbiota , Safety
3.
PLoS One ; 9(12): e115223, 2014.
Article in English | MEDLINE | ID: mdl-25506918

ABSTRACT

Antimicrobial resistance represents a major global threat to modern medicine. In vitro studies have shown that very low concentrations of drugs, as frequently identified in the environment, and in foods and water for human and animal consumption, can select for resistant bacteria. However, limited information is currently available on the in vivo impact of ingested drug residues. The objective of our study was to evaluate the effect of feeding preweaned calves milk containing antimicrobial drug residues (below the minimum inhibitory concentration), similar to concentrations detected in milk commonly fed to dairy calves, on selection of resistant fecal E. coli in calves from birth to weaning. At birth, thirty calves were randomly assigned to a controlled feeding trial where: 15 calves were fed raw milk with no drug residues (NR), and 15 calves were fed raw milk with drug residues (DR) by adding ceftiofur, penicillin, ampicillin, and oxytetracycline at final concentrations in the milk of 0.1, 0.005, 0.01, and 0.3 µg/ml, respectively. Fecal samples were rectally collected from each calf once a week starting at birth prior to the first feeding in the trial (pre-treatment) until 6 weeks of age. A significantly greater proportion of E. coli resistant to ampicillin, cefoxitin, ceftiofur, streptomycin and tetracycline was observed in DR calves when compared to NR calves. Additionally, isolates from DR calves had a significant decrease in susceptibility to ceftriaxone and ceftiofur when compared to isolates from NR calves. A greater proportion of E. coli isolates from calves in the DR group were resistant to 3 or more antimicrobial drugs when compared to calves in the ND group. These findings highlight the role that low concentrations of antimicrobial drugs have on the evolution and selection of resistance to multiple antimicrobial drugs in vivo.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Residues/pharmacology , Drug Resistance, Multiple, Bacterial , Escherichia coli/drug effects , Milk/chemistry , Animals , Cattle , Streptomycin/pharmacology , Tetracycline/pharmacology , beta-Lactams/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...