Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36501285

ABSTRACT

The nanoencapsulation of nitric oxide (NO) donors is an attractive technique to protect these molecules from rapid degradation, expanding, and enabling their use in agriculture. Here, we evaluated the effect of the soil application of chitosan nanoparticles containing S-nitroso-MSA (a S-nitrosothiol) on the protection of soybeans (Glycine max cv. BRS 257) against copper (Cu) stress. Soybeans were grown in a greenhouse in soil supplemented with 164 and 244 mg kg-1 Cu and treated with a free or nanoencapsulated NO donor at 1 mM, as well as with nanoparticles without NO. There were also soybean plants treated with distilled water and maintained in soil without Cu addition (control), and with Cu addition (water). The exogenous application of the nanoencapsulated and free S-nitroso-MSA improved the growth and promoted the maintenance of the photosynthetic activity in Cu-stressed plants. However, only the nanoencapsulated S-nitroso-MSA increased the bioavailability of NO in the roots, providing a more significant induction of the antioxidant activity, the attenuation of oxidative damage, and a greater capacity to mitigate the root nutritional imbalance triggered by Cu stress. The results suggest that the nanoencapsulation of the NO donors enables a more efficient delivery of NO for the protection of soybean plants under Cu stress.

2.
J Cell Physiol ; 237(11): 4262-4274, 2022 11.
Article in English | MEDLINE | ID: mdl-36125908

ABSTRACT

Obesity is a worldwide health problem and is directly associated with insulin resistance and type 2 diabetes. The liver is an important organ for the control of healthy glycemic levels, since insulin resistance in this organ reduces phosphorylation of forkhead box protein 1 (FOXO1) protein, leading to higher hepatic glucose production (HGP) and fasting hyperglycemia. Aerobic physical training is known as an important strategy in increasing the insulin action in the liver by increasing FOXO1 phosphorylation and reducing gluconeogenesis. However, little is known about the effects of strength training in this context. This study aimed to investigate the effects of short-term strength training on hepatic insulin sensitivity and glycogen synthase kinase-3ß (GSK3ß) and FOXO1 phosphorylation in obese (OB) mice. To achieve this goal, OB Swiss mice performed the strength training protocol (one daily session for 15 days). Short-term strength training increased the phosphorylation of protein kinase B and GSK3ß in the liver after insulin stimulus and improved the control of HGP during the pyruvate tolerance test. On the other hand, sedentary OB animals reduced FOXO1 phosphorylation and increased the levels of nuclear FOXO1 in the liver, increasing the phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) content. The bioinformatics analysis also showed positive correlations between hepatic FOXO1 levels and gluconeogenic genes, reinforcing our findings. However, strength-trained animals reverted to this scenario, regardless of body adiposity changes. In conclusion, short-term strength training is an efficient strategy to enhance the insulin action in the liver of OB mice, contributing to glycemic control by reducing the activity of hepatic FOXO1 and lowering PEPCK and G6Pase contents.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Resistance Training , Mice , Humans , Animals , Mice, Obese , Insulin Resistance/genetics , Diabetes Mellitus, Type 2/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Liver/metabolism , Insulin/metabolism , Obesity/genetics , Obesity/metabolism , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Mice, Inbred C57BL
3.
J Colloid Interface Sci ; 614: 489-501, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35121507

ABSTRACT

Gold nanoparticles (AuNPs) can be used in diagnostic and therapeutic applications. The development of facile and fast synthetic approaches is accordingly desirable towards ready-to-use biomedical materials. We report a practical one-pot method for the synthesis in aqueous media and room temperature of surface-decorated AuNPs with enhanced biological responses. The gold ions could be reduced using only polyethyleneimine (PEI) derivatives containing sugar and-or alkyl chains acting simultaneously as reducing and stabilizing agent, without the aid of any other mediator. The process is possibly potentialized by the presence of the amino groups in the polymer chains which further confer colloidal stability. The kinetics of AuNPs nucleation and growth depends on the chemical nature of the polymer chains. Particularly, the presence of lactose moieties conjugated to the PEI chains conducted to surface-decorated AuNPs with low cytotoxicity that are remarkably faster uptaken by HepG2 cells. These cells overexpress asialoglycoprotein (ASGP-R), a galactose receptor. These findings may kick off significant advances towards the practical and ready-to-use manufacturing of functionalized AuNPs towards cell-targeting since the methodology is applicable for a large variety of other ligands that can be conjugated to the same polymer chains.


Subject(s)
Gold , Metal Nanoparticles , Hep G2 Cells , Humans , Polyethyleneimine , Temperature
4.
Food Chem ; 285: 334-339, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30797354

ABSTRACT

A versatile, rapid and safe green method for chlorine and sulfur determination using ion chromatography in cereals and legumes was developed. Microwave-induced combustion was evaluated for sample preparation. Ultrapure water and alkaline solutions were assessed for absorption of the analytes. Water was selected because good recoveries (97-109%) were obtained for both analytes. Low consumption of reagents and small quantities of waste are two important advantages of the proposed method. Accuracy was evaluated by analysis of a standard reference material, which agreed with certified values (91-101%). The results for repeatability (RSDs ≤ 4%) and intermediate precision (RSDs ≤ 7%) prove the good precision of the proposed method. Limits of quantification were 16 and 17 mg kg-1 for Cl and S, respectively. Concentrations of Cl and S varied across a wide range (Cl: 35-930 mg kg-1; S: 678-5124 mg kg-1) for 34 samples analyzed, which were, for most of the results, close to the values found in the literature.


Subject(s)
Chlorine/analysis , Edible Grain/chemistry , Fabaceae/chemistry , Food Analysis/methods , Sulfur/analysis , Chromatography, Ion Exchange/methods , Chromatography, Ion Exchange/standards , Flour/analysis , Food Analysis/standards , Limit of Detection , Microwaves , Reference Standards , Water/chemistry
5.
Front Cell Neurosci ; 12: 88, 2018.
Article in English | MEDLINE | ID: mdl-29643769

ABSTRACT

Obesity is a public health issue that affects more than 600 million adults worldwide. The disease is characterized by fat accumulation, mainly in the abdominal area. The human body is mainly composed of two types of adipose tissue: white adipose tissue (WAT) and brown adipose tissue (BAT); however, the browning process generates a different type of brown fat-like adipocyte in WAT, which similar to BAT has thermogenic capacity by activating UCP-1. The hypothalamic arcuate nucleus plays an important role in WAT browning via POMC neurons, which are influenced by synergistic insulin and leptin signaling. On the other hand, stimulation of AgRP neurons suppresses WAT browning. The hypothalamic inflammatory process that occurs in obesity impairs insulin and leptin signaling in this tissue and, consequently, can decrease WAT browning. In addition, practicing physical exercise may be a great strategy for triggering the browning process since it reduces hypothalamic inflammation and increases POMC neurons gene expression. Moreover, physical exercise stimulates irisin gene expression, which has an important impact on thermogenesis, which in turn culminates in increased gene expression of proteins such as UCP-1 and Cidea, which are related to WAT browning. Furthermore, thermogenetic activation of WAT leads to increased energy expenditure, favoring obesity treatment. Therefore, this mini-review aimed to highlight the most recent studies that link the control of hypothalamic activity with the browning metabolism of adipose tissue in response to physical exercise.

6.
Talanta ; 181: 440-447, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29426538

ABSTRACT

In this work a feasible method for chloride and sulfate determination in calcium carbonate pharmaceutical raw material and commercial tablets by ion chromatography after microwave-induced combustion was developed. The analytes were released from matrix by combustion in closed system pressurized with oxygen. Starch as volatilization aid, 100mmolL-1 HNO3 as absorbing solution and 5min of microwave irradiation time were used. Recovery tests using standard solutions were performed for the accuracy evaluation. A mixture of calcium carbonate pharmaceutical raw material or commercial tablets, starch and a certified reference material was also used as a type of recovery test. Recoveries ranging from 88% to 103% were obtained in both spike tests. Limits of detection (Cl-: 40µgg-1 and SO42-: 140µgg-1) were up to eighteen times lower than the maximum limits established for the analytes by Brazilian, British, European and Indian Pharmacopoeias. The limit tests recommended by the European Pharmacopoeia for Cl- and SO42- in CaCO3 were carried out to compare the results. Chloride and SO42- concentrations in the samples analyzed by proposed method were in agreement with those results obtained using the tests recommended by the European Pharmacopoeia. However, the proposed method presents several advantages for the routine analysis when compared to pharmacopoeial methods, such as the quantitative simultaneous determination, high sample preparation throughput (up to eight samples per run in less than 30min), reduced volume of reagents and waste generation. Thus, the proposed method is indicated as an excellent alternative for Cl- and SO42- determination in CaCO3 pharmaceutical raw material and commercial tablets.


Subject(s)
Calcium Carbonate/chemistry , Chlorides/analysis , Sulfates/analysis , Tablets/chemistry , Analytic Sample Preparation Methods/instrumentation , Analytic Sample Preparation Methods/methods , Drug Contamination/prevention & control , Microwaves , Pharmaceutical Preparations/chemistry , Reproducibility of Results , Volatilization
7.
Food Chem ; 246: 422-427, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29291868

ABSTRACT

An eco-friendly method for indirect determining phosphorus and sulfur in animal feed by ion chromatography was proposed. Using this method, it was possible to digest 500 mg of animal feed in a microwave system under oxygen pressure (20 bar) using only a diluted acid solution (2 mol L-1 HNO3). The accuracy of the proposed method was evaluated by recovery tests, by analysis of reference material (RM) and by comparison of the results with those obtained using conventional microwave-assisted digestion. Moreover, P results were compared with those obtained from the method recommended by AOAC International for animal feed (Method nr. 965.17) and no significant differences were found between the results. Recoveries for P and S were between 94 and 97%, and agreements with the reference values of RM were better than 94%. Phosphorus and S concentrations in animal feeds ranged from 10,026 to 28,357 mg kg-1 and 2259 to 4601 mg kg-1, respectively.


Subject(s)
Animal Feed/analysis , Chromatography, Liquid/methods , Phosphorus/analysis , Sulfur/analysis , Animals , Digestion , Microwaves , Nitric Acid/chemistry , Oxygen/chemistry
8.
Parasitology ; 144(10): 1275-1287, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28578742

ABSTRACT

Chagas disease and sleeping sickness are neglected tropical diseases closely related to poverty, for which the development of plant-derived treatments has not been a promising prospect. Thus, we systematicaly review the preclinical in vivo evidence on the applicability of plant-based products in the treatment of Trypanosoma cruzi and Trypanosoma brucei infections. Characteristics such as disease models, treatments, toxicological safety and methodological bias were analysed. We recovered 66 full text articles from 16 countries investigating 91 plant species. The disease models and treatments were highly variable. Most studies used native (n = 36, 54·54%) or exotic (n = 30, 45·46%) plants with ethnodirected indication (n = 45, 68·18%) for trypanosomiasis treatment. Complete phytochemical screening and toxicity assays were reported in only 15 (22·73%) and 32 (48·49%) studies, respectively. The currently available preclinical evidence is at high risk of bias. The absence of or incomplete characterization of animal models, treatment protocols, and phytochemical/toxicity analyses impaired the internal validity of the individual studies. Contradictory results of a same plant species compromise the external validity of the evidence, making it difficult determine the effectiveness, safety and biotechnological potential of plant-derived products in the development of new anti-infective agents to treat T. cruzi and T. brucei infections.


Subject(s)
Drug Evaluation, Preclinical , Plant Extracts/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma cruzi/drug effects , Animals , Cattle , Chagas Disease/drug therapy , Neglected Diseases/drug therapy , Plant Extracts/therapeutic use , Trypanocidal Agents/therapeutic use , Trypanosomiasis, African/drug therapy , Trypanosomiasis, Bovine/drug therapy
9.
Talanta ; 147: 76-81, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26592579

ABSTRACT

A microwave-induced combustion (MIC) system based on the volatilization process was applied for subsequent halogen determination from noncombustible inorganic matrices. Portland cement samples were selected to demonstrate the feasibility of the proposed method, allowing the subsequent determination of Cl and F by ion chromatography (IC). Samples were mixed with high-purity microcrystalline cellulose, wrapped with a polyethylene film and combusted in quartz closed vessels pressurized with oxygen (20bar). Water and NH4OH (10, 25 or 50m mol L(-1)) were evaluated for Cl and F absorption, but water was selected, using 5min of reflux after volatilization. Final solutions were also suitable for analysis by pontentiometry with ion-selective electrode (ISE) for both analytes, and no difference was found when comparing the results with IC. The accuracy of the proposed method for Cl was evaluated by analysis of certified reference materials (CRMs), and agreement with certified values ranged from 98% to 103%. Results were also compared to those using the procedure recommended by the American Society of Testing and Materials (ASTM) for the determination of total chlorides (C114-13), and no difference was found. Volatilization by MIC using a mixture of cement, cellulose and a biological CRM was carried out in order to evaluate the accuracy for F, and recovery was about 96%. The proposed method allowed suitable limits of detection for Cl and F by IC (99 and 18mg kg(-1), respectively) for routine analysis of cement. Using the proposed method, a relatively low standard deviation (<7%), high throughput (up to eight samples can be processed in less than 30min) and lower generation of laboratory effluents, when compared to the ASTM method, were obtained. Therefore, the method for volatilization of Cl and F by MIC and subsequent determination by IC can be proposed as a suitable alternative for cement analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...