Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Pharmgenomics Pers Med ; 12: 341-359, 2019.
Article in English | MEDLINE | ID: mdl-31819590

ABSTRACT

Hypertension is a multifactorial disease that affects approximately one billion subjects worldwide and is a major risk factor associated with cardiovascular events, including coronary heart disease and cerebrovascular accidents. Therefore, adequate blood pressure control is important to prevent these events, reducing premature mortality and disability. However, only one third of patients have the effective control of blood pressure, despite several classes of antihypertensive drugs available. These disappointing outcomes may be at least in part explained by interpatient variability in drug response due to genetic polymorphisms. To address the effects of genetic polymorphisms on blood pressure responses to the antihypertensive drug classes, studies have applied candidate genes and genome wide approaches. More recently, a third approach that considers gene-gene interactions has also been applied in hypertension pharmacogenomics. In this article, we carried out a comprehensive review of recent findings on the pharmacogenomics of antihypertensive drugs, including diuretics, ß-blockers, angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers, and calcium channel blockers. We also discuss the limitations and inconsistences that have been found in hypertension pharmacogenomics and the challenges to implement this valuable approach in clinical practice.

2.
Atherosclerosis ; 270: 146-153, 2018 03.
Article in English | MEDLINE | ID: mdl-29425960

ABSTRACT

BACKGROUND AND AIMS: Increased activity of matrix metalloproteinase (MMP)-2 is observed in aortas of different models of hypertension, and its activation is directly mediated by oxidative stress. As quercetin is an important flavonoid with significant antioxidant effects, the hypothesis here is that quercetin will reduce increased MMP-2 activity by decreasing oxidative stress in aortas of hypertensive rats and then ameliorate hypertension-induced vascular remodeling. METHODS: Male two-kidney one-clip (2K1C) hypertensive Wistar rats and controls were treated with quercetin (10 mg/kg/day) or its vehicle for three weeks by gavage. Rats were then analyzed at five weeks of hypertension. Systolic blood pressure (SBP) was determined by tail-cuff plethysmography. Aortas were used to determine MMP activity by in situ zymography and reactive oxygen species (ROS) levels by dihydroethidium. Western blot was performed to detect focal adhesion kinase (FAK) and phosphorylated-FAK levels. RESULTS: SBP was increased in 2K1C rats and only a borderline reduction in SBP was observed after treating 2K1C rats with quercetin. Cross-sectional area and the number of vascular smooth muscle cells were significantly increased in aortas of hypertensive rats, and quercetin reduced them. Quercetin reduced ROS levels in aortas of 2K1C rats and the increased activity of gelatinases in situ. However, quercetin did not affect the levels of tissue inhibitor of MMP (TIMP)-2 and did not interfere with FAK and p-FAK levels in aortas of hypertensive rats. Furthermore, different concentrations of quercetin did not directly reduce the activity of human recombinant MMP-2 in vitro. CONCLUSIONS: Quercetin reduces hypertension-induced vascular remodeling, oxidative stress and MMP-2 activity in aortas.


Subject(s)
Antioxidants/pharmacology , Aorta/drug effects , Hypertension, Renovascular/drug therapy , Matrix Metalloproteinase 2/metabolism , Oxidative Stress/drug effects , Quercetin/pharmacology , Vascular Remodeling/drug effects , Animals , Aorta/enzymology , Aorta/pathology , Aorta/physiopathology , Disease Models, Animal , Focal Adhesion Kinase 1/metabolism , Hypertension, Renovascular/enzymology , Hypertension, Renovascular/pathology , Hypertension, Renovascular/physiopathology , Male , Phosphorylation , Rats, Wistar , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...