Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oper Dent ; 44(6): E271-E278, 2019.
Article in English | MEDLINE | ID: mdl-31373891

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the biofilm formation and cell viability of a polymer-infiltrated ceramic (PIC) and an yttria-stabilized polycrystalline zirconium dioxide ceramic (Y-TZP). The null hypothesis was that there would be no difference in biofilm formation and cell viability between the materials. METHODS AND MATERIALS: Streptococcus mutans biofilm was analyzed with scanning electron microscopy (SEM), confocal laser scanning microscopy, and colony counting (colony-forming units/mL). The cell viability (fibroblasts) of both materials was measured with 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium) (MTT) test. Roughness measurements were also performed. RESULTS: The PIC displayed higher roughness but showed similar colony-forming units and biovolume values to those of Y-TZP. SEM showed a higher amount of adhered fibroblasts on the PIC surface on the first day and similar amounts on both materials after seven days. Moreover, the materials were biocompatible with human fibroblasts. CONCLUSION: PIC and Y-TZP are biocompatible and present the same characteristics for biofilm formation; therefore, they are indicated for indirect restorations and implant abutments.


Subject(s)
Polymers , Streptococcus mutans , Biofilms , Cell Survival , Ceramics , Humans , Materials Testing , Microscopy, Electron, Scanning , Surface Properties , Yttrium , Zirconium
2.
Oper Dent ; 41(6): 642-654, 2016.
Article in English | MEDLINE | ID: mdl-27820691

ABSTRACT

This study evaluated the effects of excess cement removal techniques, with or without subsequent polishing, on biofilm formation and micromorphology in the marginal region of the tooth/restoration. From bovine teeth, 96 dentin blocks (4 × 8 × 2 mm) were produced, molded, and reproduced in type IV gypsum, on which 96 pressed ceramic blocks (Vita PM9, Vita Zahnfabrik; 4 × 8 × 2 mm) were produced via the lost wax technique. The dentin blocks and their respective ceramic blocks were cemented with a self-adhesive resin cement (RelyX U200, 3M ESPE), and cement excess was removed from the margin using four different techniques, followed or not by polishing with silicone rubber tips: MBr, removal with microbrush and photoactivation; MBr-Pol, MBr + polishing; Br, removal with brush and photoactivation; Br-Pol, Br + polishing; Photo-Expl, 5 seconds of initial photoactivation, removal with explorer, and final curing; Photo-Expl-Pol, Photo-Expl + polishing; Photo-SB, 5 seconds of initial photoactivation, removal with scalpel, and final curing; and Photo-SB-Pol, Photo-SB + polishing. After 24 hours, the roughness in the marginal region was analyzed using a profilometer (three measurements on each sample). Micromorphological analyses of the region were performed by stereomicroscope and scanning electron microscopy (SEM). Then the samples were contaminated with sucrose broth standardized suspension with Streptococcus mutans , Staphylococcus aureus , and Candida albicans and incubated for a period of 48 hours. The samples were quantitatively analyzed for bacterial adherence in the marginal region by confocal laser scanning microscopy and counting of colony-forming units (CFUs/mL) and qualitatively analyzed using SEM. Roughness data (Ra) were submitted to two-way analysis of variance, Tukey test at a confidence level of 95%, and Student t-tests. CFU, biomass, and biothickness data were analyzed by Kruskal-Wallis, Mann-Whitney, and Dunn tests. The removing technique statistically influenced Ra (MBr, p=0.0019; Br, p=0.002; Photo-Expl, p=0.0262; Photo-SB, p=0.0196) when comparing the polished and unpolished groups. The MBr and MBr-Pol technique differed significantly for CFU/mL values (p=0.010). There was no significant difference in the amounts of biomass and biothickness comparing polished and unpolished groups and when all groups were compared (p>0.05). Different morphological patterns were observed (more regular surface for polished groups). We conclude that margin polishing after cementation of feldspar/pressed ceramic restorations is decisive for achieving smoother surfaces, as the excess cement around the edges can increase the surface roughness in these areas, influencing bacterial adhesion.


Subject(s)
Bacterial Adhesion , Dental Polishing , Dental Porcelain , Animals , Cattle , Ceramics , Materials Testing , Microscopy, Electron, Scanning , Resin Cements , Staphylococcus aureus , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...