Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 356(6344): 1269-1272, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28642434

ABSTRACT

In the lower solar atmosphere, the chromosphere is permeated by jets known as spicules, in which plasma is propelled at speeds of 50 to 150 kilometers per second into the corona. The origin of the spicules is poorly understood, although they are expected to play a role in heating the million-degree corona and are associated with Alfvénic waves that help drive the solar wind. We compare magnetohydrodynamic simulations of spicules with observations from the Interface Region Imaging Spectrograph and the Swedish 1-m Solar Telescope. Spicules are shown to occur when magnetic tension is amplified and transported upward through interactions between ions and neutrals or ambipolar diffusion. The tension is impulsively released to drive flows, heat plasma (through ambipolar diffusion), and generate Alfvénic waves.

2.
Science ; 346(6207): 1255757, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25324399

ABSTRACT

The heating of the outer solar atmospheric layers, i.e., the transition region and corona, to high temperatures is a long-standing problem in solar (and stellar) physics. Solutions have been hampered by an incomplete understanding of the magnetically controlled structure of these regions. The high spatial and temporal resolution observations with the Interface Region Imaging Spectrograph (IRIS) at the solar limb reveal a plethora of short, low-lying loops or loop segments at transition-region temperatures that vary rapidly, on the time scales of minutes. We argue that the existence of these loops solves a long-standing observational mystery. At the same time, based on comparison with numerical models, this detection sheds light on a critical piece of the coronal heating puzzle.

3.
Science ; 346(6207): 1255732, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25324398

ABSTRACT

The solar chromosphere and transition region (TR) form an interface between the Sun's surface and its hot outer atmosphere. There, most of the nonthermal energy that powers the solar atmosphere is transformed into heat, although the detailed mechanism remains elusive. High-resolution (0.33-arc second) observations with NASA's Interface Region Imaging Spectrograph (IRIS) reveal a chromosphere and TR that are replete with twist or torsional motions on sub-arc second scales, occurring in active regions, quiet Sun regions, and coronal holes alike. We coordinated observations with the Swedish 1-meter Solar Telescope (SST) to quantify these twisting motions and their association with rapid heating to at least TR temperatures. This view of the interface region provides insight into what heats the low solar atmosphere.

SELECTION OF CITATIONS
SEARCH DETAIL
...