Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Cardiovasc Toxicol ; 24(2): 122-132, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38165500

ABSTRACT

Doxorubicin is one of the most important antitumor drugs used in oncology; however, its cardiotoxic effect limits the therapeutic use and raises concerns regarding patient prognosis. Leucine is a branched-chain amino acid used in dietary supplementation and has been studied to attenuate the toxic effects of doxorubicin in animals, which increases oxidative stress. Oxidative stress in different organs can be estimated using several methods, including catalase expression analysis. This study aimed to analyze the effect of leucine on catalase levels in rat hearts after doxorubicin administration. Adult male Wistar rats were separated into two groups: Standard diet (SD) and 5% Leucine-Enriched Diet (LED). The animals had free access to diet from D0 to D28. At D14, the groups were subdivided in animals injected with Doxorubicin and animals injected with vehicle, until D28, and the groups were SD, SD + Dox, LED and LED + Dox. At D28, the animals were submitted do Transthoracic Echocardiography and euthanized. Despite Dox groups had impaired body weight gain, raw heart weight was not different between the groups. No substantial alterations were observed in macroscopic evaluation of the heart. Although, Doxorubicin treatment increased total interstitial collagen in the heart, which in addition to Type I collagen, is lower in LED groups. Western blot analysis showed that catalase expression in the heart of LED groups was lower than that in SD groups. In conclusion, leucine supplementation reduced both the precocious Dox-induced cardiac remodeling and catalase levels in the heart.


Subject(s)
Cardiotoxicity , Doxorubicin , Humans , Rats , Animals , Male , Catalase/metabolism , Leucine/pharmacology , Leucine/metabolism , Leucine/therapeutic use , Rats, Wistar , Doxorubicin/pharmacology , Oxidative Stress , Dietary Supplements
2.
Nutrients ; 14(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35683979

ABSTRACT

This study investigates whether ladder climbing (LC), as a model of resistance exercise, can reverse whole-body and skeletal muscle deleterious metabolic and inflammatory effects of high-fat (HF) diet-induced obesity in mice. To accomplish this, Swiss mice were fed for 17 weeks either standard chow (SC) or an HF diet and then randomly assigned to remain sedentary or to undergo 8 weeks of LC training with progressive increases in resistance weight. Prior to beginning the exercise intervention, HF-fed animals displayed a 47% increase in body weight (BW) and impaired ability to clear blood glucose during an insulin tolerance test (ITT) when compared to SC animals. However, 8 weeks of LC significantly reduced BW, adipocyte size, as well as glycemia under fasting and during the ITT in HF-fed rats. LC also increased the phosphorylation of AktSer473 and AMPKThr172 and reduced tumor necrosis factor-alpha (TNF-α) and interleukin 1 beta (IL1-ß) contents in the quadriceps muscles of HF-fed mice. Additionally, LC reduced the gene expression of inflammatory markers and attenuated HF-diet-induced NADPH oxidase subunit gp91phox in skeletal muscles. LC training was effective in reducing adiposity and the content of inflammatory mediators in skeletal muscle and improved whole-body glycemic control in mice fed an HF diet.


Subject(s)
Insulin Resistance , Resistance Training , Adipose Tissue/metabolism , Animals , Blood Glucose/metabolism , Diet, High-Fat/adverse effects , Humans , Insulin Resistance/physiology , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Obesity/metabolism , Obesity/therapy , Rats
3.
Colloids Surf B Biointerfaces ; 177: 58-67, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30711760

ABSTRACT

Nanomaterials have been attracting attention due to the wide range of applications in nanomedicine. Polypyrrole (PPy), a conductive polymer, has been employed in the biomedical field due to its stimulus-responsive properties, although in vivo studies to assess its potential undesirable effects are limited. This study evaluated the effects of PPy doped with p-toluene sulfonic acid ((p-TSA); PPy/p-TSA) exposure (at 25, 100, 250 and 500 µg/mL) during six consecutive days on mortality, hatching, spontaneous movement, heart rate, morphology and locomotion behavior of zebrafish embryos/larvae. Additionally, PPy/p-TSA envelopment of developing embryo chorions and gene expression of a hypoxia-related marker in this context were also evaluated. No significant mortality was found; however, altered heart rate and early hatching was identified in all exposed groups at 48 hours post-fertilization (hpf). Surprisingly, with the 500 µg/mL dose, hatching initiated as early as 24 hpf. PPy/p-TSA adhered to and enveloped the chorion of embryos in a time- and dose-dependent fashion; morphological changes in body length and ocular distance were found with higher concentrations. PPy/p-TSA-exposed animals showed locomotor behavioral alterations compatible with hypoactivity. A significant increase in the turn angle with a concomitant reduction in meander was also verified at higher concentrations. Taken together, these results emphasize the adverse effects of PPy/p-TSA on zebrafish development and behavior. Some effects of PPy/p-TSA exposure were dose-dependent, and indicate specific adverse effects of PPy/p-TSA on zebrafish development and behavior.


Subject(s)
Benzenesulfonates/pharmacology , Embryo, Nonmammalian/drug effects , Larva/drug effects , Polymers/pharmacology , Pyrroles/pharmacology , Animals , Benzenesulfonates/chemistry , Dose-Response Relationship, Drug , Molecular Structure , Particle Size , Polymers/chemistry , Pyrroles/chemistry , Surface Properties , Zebrafish
4.
J Neurosci ; 35(49): 16272-81, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26658875

ABSTRACT

The gastrin-releasing peptide (GRP) and its receptor (GRPR) are important components of itch transmission. Upstream, but not downstream, aspects of GRPR signaling have been investigated extensively. We hypothesize that GRPR signals in part through the PI3Kγ/Akt pathway. We used pharmacological, electrophysiological, and behavioral approaches to further evaluate GRPR downstream signaling pathways. Our data show that GRP directly activates small-size capsaicin-sensitive DRG neurons, an effect that translates into transient calcium flux and membrane depolarization (∼ 20 mV). GRPR activation also induces Akt phosphorylation, a proxy for PI3Kγ activity, in ex vivo naive mouse spinal cords and in GRPR transiently expressing HEK293 cells. The intrathecal injection of GRP led to intense scratching, an effect largely reduced by either GRPR antagonists or PI3Kγ inhibitor. Scratching behavior was also induced by the intrathecal injection of an Akt activator. In a dry skin model of itch, we show that GRPR blockade or PI3Kγ inhibition reversed the scratching behavior. Altogether, these findings are highly suggestive that GRPR is expressed by the central terminals of DRG nociceptive afferents, which transmit itch via the PI3Kγ/Akt pathway. SIGNIFICANCE STATEMENT: Itch is the most common symptom of the skin and is related to noncutaneous diseases. It severely impairs patients' quality of life when it becomes chronic and there is no specific or effective available therapy, mainly because itch pathophysiology is not completely elucidated. Our findings indicate that the enzyme PI3Kγ is a key central mediator of itch transmission. Therefore, we suggest PI3Kγ as an attractive target for the development of new anti-pruritic drugs. With this study, we take a step forward in our understanding of the mechanisms underlying the central transmission of itch sensation.


Subject(s)
Central Nervous System/metabolism , Gastrin-Releasing Peptide/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Pruritus/pathology , Receptors, Bombesin/metabolism , Synaptic Transmission/physiology , Action Potentials/drug effects , Animals , Anticarcinogenic Agents/therapeutic use , Bombesin/analogs & derivatives , Bombesin/therapeutic use , Capsaicin/toxicity , Central Nervous System/drug effects , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Ganglia, Spinal/cytology , Indoles/pharmacology , Male , Mice , Neurons/drug effects , Neurons/physiology , Pain Threshold/drug effects , Peptide Fragments/therapeutic use , Pruritus/chemically induced , Pruritus/complications , Pruritus/drug therapy , Quinoxalines/pharmacology , Reaction Time/physiology , Synaptic Transmission/drug effects , Thiazolidinediones/pharmacology , p-Methoxy-N-methylphenethylamine/toxicity
5.
Neurochem Res ; 40(5): 885-93, 2015 May.
Article in English | MEDLINE | ID: mdl-25681161

ABSTRACT

Maple syrup urine disease (MSUD) is caused by an inborn error in metabolism resulting from a deficiency in the branched-chain α-keto acid dehydrogenase complex activity. This blockage leads to accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine and valine, as well as their corresponding α-keto acids and α-hydroxy acids. High levels of BCAAs are associated with neurological dysfunction and the role of pro- and mature brain-derived neurotrophic factor (BDNF) in the neurological dysfunction of MSUD is still unclear. Thus, in the present study we investigated the effect of an acute BCAA pool administration on BDNF levels and on the pro-BDNF cleavage-related proteins S100A10 and tissue plasminogen activator (tPA) in rat brains. Our results demonstrated that acute Hyper-BCAA (H-BCAA) exposure during the early postnatal period increases pro-BDNF and total-BDNF levels in the hippocampus and striatum. Moreover, tPA levels were significantly decreased, without modifications in the tPA transcript levels in the hippocampus and striatum. On the other hand, the S100A10 mRNA and S100A10 protein levels were not changed in the hippocampus and striatum. In the 30-day-old rats, we observed increased pro-BDNF, total-BDNF and tPA levels only in the striatum, whereas the tPA and S100A10 mRNA expression and the immunocontent of S100A10 were not altered. In conclusion, we demonstrated that acute H-BCAA administration increases the pro-BDNF/total-BDNF ratio and decreases the tPA levels in animals, suggesting that the BCAA effect may depend, at least in part, on changes in BDNF post-translational processing.


Subject(s)
Amino Acids, Branched-Chain/administration & dosage , Brain-Derived Neurotrophic Factor/biosynthesis , Hippocampus/drug effects , Hippocampus/metabolism , Neostriatum/drug effects , Neostriatum/metabolism , Protein Precursors/biosynthesis , Animals , Injections, Subcutaneous , Male , Rats , Rats, Wistar
6.
Article in English | MEDLINE | ID: mdl-24813569

ABSTRACT

Lithium has been the paradigmatic treatment for bipolar disorder since 1950s, offering prophylactic and acute efficacy against maniac and depressive episodes. Its use during early pregnancy and the perinatal period remains controversial due to reports of negative consequences on the newborn including teratogenic and neurobehavioral effects generally referred as Floppy baby syndrome. The mechanisms underlying lithium therapeutic action are still elusive but exacerbation of Wnt signaling pathway due to GSK-3 inhibition is believed to represent its main effect. In this study we evaluated the impact of lithium exposure during zebrafish embryonic and early development including behavioral and molecular characterization of Wnt-ß-catenin pathway components. Wild-type zebrafish embryos were individually treated for 72 hpf with LiCl at 0.05, 0.5 and 5mM. No significant teratogenic and embryotoxic effects were observed. At the end of treatment period western blot analysis of selected Wnt-ß-catenin system components showed increased ß-catenin and decreased N-cadherin protein levels, without significant changes in Wnt3a, supporting GSK-3 inhibition as lithium's main target. At 10 dpf 0.5 and 5mM lithium-treated larvae showed a dose-dependent decrease in locomotion among other exploratory parameters, resembling lithium-induced Floppy baby syndrome neurobehavioral symptoms in humans. At this later period previously altered proteins returned to control levels in treated groups, suggesting that the neurobehavioral effects are a lasting consequence of lithium exposure during early development. RT-qPCR analysis of ß-catenin and N-cadherin gene expression showed no effects of lithium at 3 or 10 dpf, suggesting that protein fluctuations were likely due to post-transcriptional events. Other Wnt target genes were evaluated and only discrete alterations were observed. These results suggest that zebrafish may be a valuable model for investigation of early effects of lithium that may be mediated by effects on the Wnt signaling pathway.


Subject(s)
Antimanic Agents/toxicity , Lithium Chloride/toxicity , Wnt3A Protein/metabolism , Zebrafish Proteins/metabolism , Zebrafish/growth & development , beta Catenin/metabolism , Animals , Blotting, Western , Cadherins/metabolism , Dose-Response Relationship, Drug , Heart Defects, Congenital/chemically induced , Kaplan-Meier Estimate , Motor Activity/physiology , RNA, Messenger , Reverse Transcriptase Polymerase Chain Reaction , Tail/abnormalities , Zebrafish/physiology
7.
Mol Neurobiol ; 49(2): 734-40, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24091827

ABSTRACT

Tyrosinemia type II, which is also known as Richner-Hanhart syndrome, is an inborn error of metabolism that is due to a block in the transamination reaction that converts tyrosine to p-hydroxyphenylpyruvate. Because the mechanisms of neurological dysfunction in hypertyrosinemic patients are poorly known and the symptoms of these patients are related to the central nervous system, the present study evaluated brain-derived neurotrophic factor (BDNF) levels and bdnf mRNA expression in young rats and during growth. In our acute protocol, Wistar rats (10 and 30 days old) were killed 1 h after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old), and the rats were killed 12 h after the last injection. The brains were rapidly removed, and we evaluated the BDNF levels and bdnf mRNA expression. The present results showed that the acute administration of L-tyrosine decreased both BDNF and bdnf mRNA levels in the striatum of 10-day-old rats. In the 30-day-old rats, we observed decreased BDNF levels without modifications in bdnf transcript level in the hippocampus and striatum. Chronic administration of L-tyrosine increased the BDNF levels in the striatum of rats during their growth, whereas bdnf mRNA expression was not altered. We hypothesize that oxidative stress can interact with the BDNF system to modulate synaptic plasticity and cognitive function. The present results enhance our knowledge of the pathophysiology of hypertyrosinemia.


Subject(s)
Brain-Derived Neurotrophic Factor/biosynthesis , Brain/metabolism , Gene Expression Regulation , RNA, Messenger/biosynthesis , Tyrosine/administration & dosage , Animals , Brain/drug effects , Drug Evaluation, Preclinical/methods , Male , Oxidative Stress/drug effects , Oxidative Stress/physiology , Rats , Rats, Wistar
8.
Basic Clin Pharmacol Toxicol ; 114(6): 476-84, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24345272

ABSTRACT

Renal thioredoxin reductase-1 (TrxR-1) activity is stimulated at lead doses lower than that necessary to inhibit δ-aminolevulinate dehydratase activity (δ-ALA-D), which is a classical early biomarker of lead effects. Thus, we hypothesized that the activity of TrxR-1 could be a more sensitive early indicator of lead effects than is δ-ALA-D. To evaluate this hypothesis, we assessed the blood and renal TrxR-1 activity and its gene expression along with biomarkers of oxidative damage, antioxidant enzyme activities and biomarkers of lead exposure in rats acutely exposed to lead. A histopathological analysis was performed to verify renal damage. The increase in renal TrxR-1 activity paralleled the increase in the blood and renal lead levels at 6, 24 and 48 hr after the exposure to 25 mg/kg lead acetate (p < 0.05), whereas its expression was increased 24 and 48 hr after exposure. These effects were not accompanied by oxidative or tissue damage in the kidneys. Blood TrxR-1 activity was not affected by lead exposure (up to 25 mg/kg). Erythrocyte δ-ALA-D activity was inhibited 6 hr after the exposure to 25 mg/kg lead acetate (p < 0.05) but recovered thereafter. Renal δ-ALA-D activity decreased 24 and 48 hr after the exposure to 25 mg/kg lead acetate. There were no changes in any parameters at lead acetate doses <25 mg/kg. Our results indicate that blood TrxR-1 activity is not a suitable indicator of lead effects. In contrast, the increase in renal TrxR-1 expression and activity is implicated in the early events of lead exposure, most likely as a protective cellular mechanism against lead toxicity.


Subject(s)
Cytosol/enzymology , Kidney/drug effects , Lead/toxicity , Thioredoxin Reductase 1/metabolism , Animals , Erythrocytes/enzymology , Intracellular Signaling Peptides and Proteins/physiology , Kelch-Like ECH-Associated Protein 1 , Kidney/enzymology , Kidney/pathology , Lead/pharmacokinetics , Male , Porphobilinogen Synthase/metabolism , Rats , Rats, Wistar , Thioredoxin Reductase 1/genetics
9.
Mol Neurobiol ; 48(3): 581-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23559405

ABSTRACT

Maple syrup urine disease (MSUD) is a neurometabolic disorder caused by deficiency of the activity of the mitochondrial enzyme complex branched-chain α-keto acid dehydrogenase leading to accumulation of the branched-chain amino acids (BCAA) and their corresponding branched-chain α-keto acids. In this study, we examined the effects of acute and chronic administration of BCAA on protein levels and mRNA expression of nerve growth factor (NGF) considering that patients with MSUD present neurological dysfunction and cognitive impairment. Considering previous observations, it is suggested that oxidative stress may be involved in the pathophysiology of the neurological dysfunction of MSUD. We also investigated the influence of antioxidant treatment (N-acetylcysteine and deferoxamine) in order to verify the influence of oxidative stress in the modulation of NGF levels. Our results demonstrated decreased protein levels of NGF in the hippocampus after acute and chronic administration of BCAA. In addition, we showed a significant decrease in the expression of ngf in the hippocampus only following acute administration in 10-day-old rats. Interestingly, antioxidant treatment was able to prevent the decrease in NGF levels by increasing ngf expression. In conclusion, the results suggest that BCAA is involved in the regulation of NGF in the developing rat. Thus, it is possible that alteration of neurotrophin levels during brain maturation could be of pivotal importance in the impairment of cognition provoked by BCAA. Moreover, the decrease in NGF levels was prevented by antioxidant treatment, reinforcing that the hypothesis of oxidative stress can be an important pathophysiological mechanism underlying the brain damage observed in MSUD.


Subject(s)
Amino Acids, Branched-Chain/administration & dosage , Amino Acids, Branched-Chain/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Nerve Growth Factor/metabolism , Animals , Antioxidants/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Gene Expression Regulation/drug effects , Male , Neostriatum/drug effects , Neostriatum/metabolism , Nerve Growth Factor/genetics , Rats , Rats, Wistar
10.
Neurochem Int ; 61(8): 1370-4, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23046746

ABSTRACT

Tyrosinemia is a rare genetic disease caused by mutations on genes that codify enzymes responsible for tyrosine metabolism. Considering that tyrosinemics patients usually present symptoms associated with central nervous system alterations that ranges from slight decreases in intelligence to severe mental retardation, we decided to investigate whether acute and chronic administration of L-tyrosine in rats would affect acetylcholinesterase mRNA expression and enzymatic activity during their development. In our acute protocol, Wistar rats (10 and 30 days old) were killed one hour after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old) and rats were killed 12 h after last injection. Acetylcholinesterase activity was measured by Ellman's method and acetylcholinesterase expression was carried out by a semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) assay. We observed that acute (10 and 30 days old rats) and chronic L-tyrosine administration increased acetylcholinesterase activity in serum and all tested brain areas (hippocampus, striatum and cerebral cortex) when compared to control group. Moreover, there was a significant decrease in mRNA levels of acetylcholinesterase in hippocampus was observed after acute protocol (10 and 30 days old rats) and in striatum after chronic protocol. In case these alterations also occur in the brain of the patients, our results may explain, at least in part, the neurological sequelae associated with high plasma concentrations of tyrosine seen in patients affected by tyrosinemia type II.


Subject(s)
Acetylcholinesterase/biosynthesis , Tyrosine/pharmacology , Acetylcholinesterase/blood , Acetylcholinesterase/genetics , Animals , Animals, Newborn , Animals, Suckling , Brain Chemistry/drug effects , Disease Models, Animal , Drug Administration Schedule , Enzyme Induction/drug effects , GPI-Linked Proteins/biosynthesis , GPI-Linked Proteins/blood , GPI-Linked Proteins/genetics , Injections, Intraperitoneal , Male , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , RNA, Messenger/biosynthesis , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Tyrosine/administration & dosage , Tyrosinemias/enzymology
11.
Neurochem Res ; 37(7): 1545-53, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22437435

ABSTRACT

Hypermethioninemic patients exhibit a variable degree of neurological dysfunction. However, the mechanisms involved in these alterations have not been completely clarified. Cholinergic system has been implicated in many physiological processes, including cognitive performances, as learning, and memory. Parameters of cholinergic signaling have already been characterized in zebrafish brain. Since zebrafish is a small freshwater teleost which is a vertebrate model for modeling behavioral and functional parameters related to human pathogenesis and for clinical treatment screenings, in the present study we investigated the effects of short- and long-term methionine exposure on cognitive impairment, AChE activity and gene expression in zebrafish. For the studies, animals were exposed at two methionine concentrations (1.5 and 3.0 mM) during 1 h or 7 days (short- or long-term treatments, respectively). We observed a significant increase in AChE activity of zebrafish brain membranes after long-term methionine exposure at 3.0 mM. However, AChE gene expression decreased significantly in both concentrations tested after 7 days of treatment, suggesting that post-translational events are involved in the enhancement of AChE activity. Methionine treatment induces memory deficit in zebrafish after long-term exposure to this amino acid, which could be related, at least in part, with cognitive impairment observed in hypermethioninemia. Therefore, the results here presented raise a new perspective to use the zebrafish as a complementary vertebrate model for studying inborn errors of metabolism, which may help to better understand the pathophysiology of this disease.


Subject(s)
Acetylcholinesterase/metabolism , Avoidance Learning , Memory Disorders/chemically induced , Methionine/administration & dosage , Animals , Base Sequence , Brain/enzymology , DNA Primers , Memory Disorders/enzymology , Methionine/toxicity , Polymerase Chain Reaction , Zebrafish
12.
Mol Neurobiol ; 45(2): 279-86, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22328136

ABSTRACT

Maple syrup urine disease is an inherited metabolic disease predominantly characterized by neurological dysfunction. However, the mechanisms underlying the neuropathology of this disease are still not defined. Therefore, the aim of this study was to investigate the effect of acute and chronic administration of a branched-chain amino acids (BCAA) pool (leucine, isoleucine, and valine) on acetylcholinesterase (AChE) activity and gene expression in the brain and serum of rats and to assess if antioxidant treatment prevented the alterations induced by BCAA administration. Our results show that the acute administration of a BCAA pool in 10- and 30-day-old rats increases AChE activity in the cerebral cortex, striatum, hippocampus, and serum. Moreover, chronic administration of the BCAA pool also increases AChE activity in the structures studied, and antioxidant treatment prevents this increase. In addition, we show a significant decrease in the mRNA expression of AChE in the hippocampus following acute administration in 10- and 30-day-old rats. On the other hand, AChE expression increased significantly after chronic administration of the BCAA pool. Interestingly, the antioxidant treatment was able to prevent the increased AChE activity without altering AChE expression. In conclusion, the results from the present study demonstrate a marked increase in AChE activity in all brain structures following the administration of a BCAA pool. Moreover, the increased AChE activity is prevented by the coadministration of N-acetylcysteine and deferoxamine as antioxidants.


Subject(s)
Acetylcholinesterase/blood , Amino Acids, Branched-Chain/metabolism , Antioxidants/pharmacology , Brain Chemistry/physiology , Maple Syrup Urine Disease/drug therapy , Maple Syrup Urine Disease/enzymology , Acetylcholinesterase/genetics , Amino Acids, Branched-Chain/toxicity , Animals , Antioxidants/therapeutic use , Brain Chemistry/drug effects , Disease Models, Animal , Male , Maple Syrup Urine Disease/chemically induced , Rats , Rats, Wistar
13.
Comp Biochem Physiol C Toxicol Pharmacol ; 154(3): 146-53, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21586338

ABSTRACT

This paper evaluated the chemoprotective effect of lipoic acid (LA) against microcystin (MC) toxicity in carp Cyprinus carpio. To determine the LA dose and the time necessary for the induction of three different classes (alpha, mu and pi) of glutathione S-transferase (GST) gene transcription, carp were i.p. injected with 40mg/kg lipoic acid solution. A group was killed 24h after the first i.p. injection (condition 1); another group received two i.p. injections with a 24h of interval between each one and was killed 48h after the first injection (condition 2) and a third group received one i.p. injection and was killed 48h latter (condition 3). Results showed that LA was effective in promoting an increase in GSTs gene transcription in liver only in the condition 2. A second experiment was done, where carp pre-treated with LA (condition 2) were gavaged twice with a 24h interval with 50µg MC/kg. Ninety-six hours after experiment beginning, carp were killed, and organs were dissected. Results of GST activity in liver and brain suggest that LA can be a useful chemoprotection agent against MC induced toxicity, stimulating detoxification through the increment of GST activity (brain) or through reversion of GST inhibition (liver).


Subject(s)
Carps , Microcystins/toxicity , Protective Agents/pharmacology , Thioctic Acid/pharmacology , Animals , Antioxidants/metabolism , Brain/drug effects , Brain/enzymology , Carps/metabolism , Glutamate-Cysteine Ligase/metabolism , Glutathione/metabolism , Glutathione Transferase/genetics , Isoenzymes/genetics , Liver/drug effects , Liver/enzymology , Peroxides/metabolism , Water Pollutants, Chemical/toxicity
14.
Metab Brain Dis ; 26(2): 141-7, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21509571

ABSTRACT

Considering that Na(+),K(+)-ATPase is an embedded-membrane enzyme and that experimental chronic hyperprolinemia decreases the activity of this enzyme in brain synaptic plasma membranes, the present study investigated the effect of chronic proline administration on thiobarbituric acid-reactive substances, as well as the influence of antioxidant vitamins E plus C on the effects mediated by proline on Na(+),K(+)-ATPase activity in cerebral cortex of rats. The expression of Na(+),K(+)-ATPase catalytic subunits was also evaluated. Results showed that proline increased thiobarbituric acid-reactive substances, suggesting an increase of lipid peroxidation. Furthermore, concomitant administration of vitamins E plus C significantly prevented the increase of lipid peroxidation, as well as the inhibition of Na(+),K(+)-ATPase activity caused by proline. We did not observe any change in levels of Na(+),K(+)-ATPase mRNA transcripts after chronic exposure to proline and vitamins E plus C. These findings provide insights into the mechanisms through which proline exerts its effects on brain function and suggest that treatment with antioxidants may be beneficial to treat neurological dysfunctions present in hyperprolinemic patients.


Subject(s)
Antioxidants , Ascorbic Acid , Cerebral Cortex/enzymology , Lipid Peroxidation/drug effects , Sodium-Potassium-Exchanging ATPase/drug effects , Vitamin E , 1-Pyrroline-5-Carboxylate Dehydrogenase/deficiency , Amino Acid Metabolism, Inborn Errors/chemically induced , Amino Acid Metabolism, Inborn Errors/metabolism , Analysis of Variance , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Ascorbic Acid/metabolism , Ascorbic Acid/pharmacology , Cerebral Cortex/drug effects , Disease Models, Animal , Drug Synergism , Gene Expression/drug effects , Humans , Oxidative Stress/drug effects , Proline/administration & dosage , Proline/adverse effects , Proline Oxidase/deficiency , Proline Oxidase/metabolism , Rats , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Synaptic Membranes/drug effects , Thiobarbituric Acid Reactive Substances/metabolism , Vitamin E/metabolism , Vitamin E/pharmacology
15.
Int J Dev Neurosci ; 29(4): 483-8, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21354298

ABSTRACT

In the current study we initially investigated the influence of antioxidants (vitamins E plus C) on the effect mediated by acute and chronic administration of methionine (Met) on Na(+),K(+)-ATPase activity in rat hippocampus. We also verified whether the alterations on the enzyme after administration of Met and/or antioxidants were associated with changes in relative expression of Na(+),K(+)-ATPase catalytic subunits (isoforms α1, α2 and α3). For acute treatment, young rats received a single subcutaneous injection of Met or saline (control) and were sacrificed 12 h later. In another set of experiments, rats were pretreated for 1 week with daily intraperitoneal administration of vitamins E (40 mg/kg) and C (100 mg/kg) or saline. After that, rats received a single injection of Met or saline and were killed 12 h later. For chronic treatment, Met was administered to rats from the 6th to the 28th day of life; controls and treated rats were sacrificed 12 h after the last injection. In parallel to chronic treatment, rats received a daily intraperitoneal injection of vitamins E and C from the 6th to the 28th day of life and were killed 12 h after the last injection. Results showed that administration of antioxidants partially prevented the inhibition of enzyme activity caused by acute and chronic hypermethioninemia. Besides, we demonstrated that transcription of catalytic subunits of Na(+),K(+)-ATPase was not altered by chronic and acute exposure to Met and/or vitamins E plus C. These data strongly suggest the oxidative damage as one possible mechanism involved in the reduction of Na(+),K(+)-ATPase activity caused by hypermethioninemia and if confirmed in human beings, we might propose the use of antioxidants as an adjuvant therapy in hypermethioninemic patients.


Subject(s)
Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/prevention & control , Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Hippocampus/drug effects , Hippocampus/enzymology , Methionine/blood , Sodium-Potassium-Exchanging ATPase/metabolism , Vitamin E/pharmacology , Acute Disease , Amino Acid Metabolism, Inborn Errors/enzymology , Animals , Chronic Disease , Humans , Rats , Rats, Wistar
16.
Arch Environ Contam Toxicol ; 61(2): 311-7, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21072630

ABSTRACT

Bacteria communities living in mucus secretions of common carp Cyprinus carpio (Cyprinidae) were exposed to the organic nanomaterial fullerene (C(60)) to evaluate its potential bactericidal effects. End points analyzed were viability, growth, reactive oxygen species (ROS) concentration, and total antioxidant competence against peroxyl radicals. Viability was not affected (p > 0.05), whereas growth was arrested (p < 0.05) after 3 hours of exposure to the three concentration of C(60) assayed (0.1, 1, and 10 mg/L). Levels of RO measured at different C(60) concentration showed that some colonies were reactive (significant dose-response relation, p < 0.05) to C(60), whereas others were not. The nonreactive colonies to C(60) presented higher antioxidant competence to peroxyl radicals compared with the reactive colonies (p < 0.05). The strains isolated and identified by polymerase chain reaction (PCR) products of 16S rRNA showed a predominance of Aeromonas genus between all the isolated Gram-negative bacteria. Thus, the present results indicate that C(60) affects bacterial communities that live in mucus secretions of common carp.


Subject(s)
Aeromonas/growth & development , Antioxidants/pharmacology , Carps/microbiology , Environmental Exposure/analysis , Fullerenes/pharmacology , Mucus/microbiology , Nanostructures/chemistry , Aeromonas/drug effects , Aeromonas/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Carps/metabolism , Fullerenes/chemistry , Mucus/metabolism , Peroxides/metabolism , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...