Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 14(24): 8594-8600, 2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35660836

ABSTRACT

Superconductivity in low dimensional materials and 2D electrides are topics of great interest with possible applications in next generation electronic devices. Using density functional theory (DFT) associated with Migdal-Eliashberg approach and maximally localized Wannier functions this study shows how biaxial strain affects superconductivity in a monolayer of Mo2N. Results indicate that 2D Mo2N presents strong electron-phonon coupling with large anisotropy in the superconducting energy gap. It is also proposed that, at low temperatures, a single layer of Mo2N becomes an electride with localized electron gas pockets on the surface, resembling anions adsorbed on an atomic sheet. Calculations point to Tc = 24.7 K, a record high transition temperature for this class of material at ambient pressure. Furthermore, it is shown that when biaxial strain is applied to a superconducting Mo2N monolayer, a new superconductivity gap starts at 2% strain and is enhanced by continuum strain, opening additional coupling channels.

2.
J Phys Chem A ; 124(6): 1152-1157, 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-31971391

ABSTRACT

After the experimental evidence of polyynic as the stable form of cyclo[18]carbon, in the present paper, using ab initio electronic structure calculations, we show that this result is a symmetry breaking event, a consequence of the second-order Jahn-Teller effect. We show that the eigenfunctions associated with lowest unoccupied molecular orbitals (LUMO) and LUMO + 1, the excited states of this ring molecule, interact with the eigenfunctions associated with the ground state (occupied states), and this interaction stabilizes the less symmetric polyynic form of cyclo[18]carbon with D9h symmetry, instead of the cumulenic form. The frontier state interactions are responsible for the distortions in the symmetry in the electronic structures, lowering the energy and making the polyynic form the stable one with alternating triple and single bonds.

SELECTION OF CITATIONS
SEARCH DETAIL
...