Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Int J Biol Macromol ; 165(Pt B): 1832-1841, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33075341

ABSTRACT

Studies have shown that inhibition of Plasmodium falciparum Purine Nucleoside Phosphorylase (PfPNP) blocks the purine salvage pathway in vitro and in vivo. In this study, PfPNP was evaluated as a model in the search for new inhibitors using surface plasmon resonance (SPR). Its expression, purification, oligomeric state, kinetic constants, calorimetric parameters and kinetic mechanisms were obtained. PfPNP was immobilized on a CM5 sensor chip and sensorgrams were produced through binding the enzyme to the substrate MESG and interactions between molecules contained in 10 fractions of natural extracts. The oligomeric state showed that recombinant PfPNP is a hexamer. The true steady-state kinetic parameters for the substrate inosine were: KM 17 µM, kcat 1.2 s-1, VMax 2.2 U/mg and kcat/KM 7 × 10-4; for MESG they were: KM 131 µM, kcat 2.4 s-1, VMax 4.4 U/mg and kcat/KM 1.8 × 10-4. The thermodynamic parameters for the substrate Phosphate were: ΔG - 5.8 cal mol-1, ΔH - 6.5 cal mol-1 and ΔS - 2.25 cal mol-1/degree. The ITC results demonstrated that the binding of phosphate to free PfPNP led to a significant change in heat and association constants and thermodynamic parameters. A sequential ordered mechanism was proposed as the kinetic mechanism. Three plant extracts contained molecules capable of interacting with PfPNP, showing different levels of affinity. The identification of plant extract fractions containing molecules that interact with recombinant PfPNP using SRP validates this target as a model in the search for new inhibitors. In this study, we showed for the first time the true steady-state kinetic parameters for reactions catalyzed by PfPNP and a model using PfPNP as a target for High-throughput Screening for new inhibitors through SPR. This knowledge will allow for the development of more efficient research methods in the search for new drugs against malaria.


Subject(s)
Enzyme Inhibitors/analysis , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Models, Molecular , Plasmodium falciparum/enzymology , Purine-Nucleoside Phosphorylase/antagonists & inhibitors , Biological Assay , Calorimetry , Guanosine/analogs & derivatives , Guanosine/metabolism , Hesperidin/chemistry , Hesperidin/pharmacology , Kinetics , Pentacyclic Triterpenes/chemistry , Pentacyclic Triterpenes/pharmacology , Plant Extracts/chemistry , Plasmodium falciparum/drug effects , Protein Multimerization , Purine-Nucleoside Phosphorylase/chemistry , Quercetin/chemistry , Quercetin/pharmacology , Recombinant Proteins/isolation & purification , Substrate Specificity , Surface Plasmon Resonance , Thermodynamics , Thionucleosides/metabolism
2.
PLoS One ; 11(3): e0151363, 2016.
Article in English | MEDLINE | ID: mdl-27028872

ABSTRACT

Antivenoms, produced using animal hyperimmune plasma, remains the standard therapy for snakebites. Although effective against systemic damages, conventional antivenoms have limited efficacy against local tissue damage. Additionally, the hypersensitivity reactions, often elicited by antivenoms, the high costs for animal maintenance, the difficulty of producing homogeneous lots, and the instability of biological products instigate the search for innovative products for antivenom therapy. In this study, camelid antibody fragments (VHH) with specificity to Bothropstoxin I and II (BthTX-I and BthTX-II), two myotoxic phospholipases from Bothrops jararacussu venom, were selected from an immune VHH phage display library. After biopanning, 28 and 6 clones recognized BthTX-I and BthTX-II by ELISA, respectively. Complementarity determining regions (CDRs) and immunoglobulin frameworks (FRs) of 13 VHH-deduced amino acid sequences were identified, as well as the camelid hallmark amino acid substitutions in FR2. Three VHH clones (KF498607, KF498608, and KC329718) were capable of recognizing BthTX-I by Western blot and showed affinity constants in the nanomolar range against both toxins. VHHs inhibited the BthTX-II phospholipase A2 activity, and when tested for cross-reactivity, presented specificity to the Bothrops genus in ELISA. Furthermore, two clones (KC329718 and KF498607) neutralized the myotoxic effects induced by B. jararacussu venom, BthTX-I, BthTX-II, and by a myotoxin from Bothrops brazili venom (MTX-I) in mice. Molecular docking revealed that VHH CDRs are expected to bind the C-terminal of both toxins, essential for myotoxic activity, and to epitopes in the BthTX-II enzymatic cleft. Identified VHHs could be a biotechnological tool to improve the treatment for snake envenomation, an important and neglected world public health problem.


Subject(s)
Antivenins , Bothrops , Crotalid Venoms , Group II Phospholipases A2 , Molecular Docking Simulation , Single-Chain Antibodies , Animals , Antivenins/chemistry , Antivenins/genetics , Antivenins/immunology , Camelids, New World/genetics , Camelids, New World/immunology , Crotalid Venoms/chemistry , Crotalid Venoms/immunology , Crotalid Venoms/toxicity , Group II Phospholipases A2/chemistry , Group II Phospholipases A2/immunology , Group II Phospholipases A2/toxicity , Male , Mice , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology
3.
PLoS One ; 9(9): e108067, 2014.
Article in English | MEDLINE | ID: mdl-25243411

ABSTRACT

In addition to conventional antibodies, camelids produce immunoglobulins G composed exclusively of heavy chains in which the antigen binding site is formed only by single domains called VHH. Their particular characteristics make VHHs interesting tools for drug-delivery, passive immunotherapy and high-throughput diagnosis. Hantaviruses are rodent-borne viruses of the Bunyaviridae family. Two clinical forms of the infection are known. Hemorrhagic Fever with Renal Syndrome (HFRS) is present in the Old World, while Hantavirus Pulmonary Syndrome (HPS) is found on the American continent. There is no specific treatment for HPS and its diagnosis is carried out by molecular or serological techniques, using mainly monoclonal antibodies or hantavirus nucleoprotein (N) to detect IgM and IgG in patient serum. This study proposes the use of camelid VHHs to develop alternative methods for diagnosing and confirming HPS. Phage display technology was employed to obtain VHHs. After immunizing one Lama glama against the recombinant N protein (prNΔ85) of a Brazilian hantavirus strain, VHH regions were isolated to construct an immune library. VHHs were displayed fused to the M13KO7 phage coat protein III and the selection steps were performed on immobilized prNΔ85. After selection, eighty clones recognized specifically the N protein. These were sequenced, grouped based mainly on the CDRs, and five clones were analyzed by western blot (WB), surface plasmon resonance (SPR) device, and ELISA. Besides the ability to recognize prNΔ85 by WB, all selected clones showed affinity constants in the nanomolar range. Additionaly, the clone KC329705 is able to detect prNΔ85 in solution, as well as the native viral antigen. Findings support the hypothesis that selected VHHs could be a powerful tool in the development of rapid and accurate HPS diagnostic assays, which are essential to provide supportive care to patients and reduce the high mortality rate associated with hantavirus infections.


Subject(s)
Camelus/immunology , Hantavirus Pulmonary Syndrome/diagnosis , Immunoglobulin Fragments/immunology , Nucleoproteins/immunology , Orthohantavirus/immunology , Amino Acid Sequence , Animals , Antibodies, Viral/biosynthesis , Early Diagnosis , Hantavirus Pulmonary Syndrome/immunology , Humans , Immunoglobulin Fragments/chemistry , Male , Molecular Sequence Data , Sequence Homology, Amino Acid , Surface Plasmon Resonance
5.
Rev Inst Med Trop Sao Paulo ; 47(4): 195-201, 2005.
Article in English | MEDLINE | ID: mdl-16138199

ABSTRACT

The var genes of Plasmodium falciparum code for the antigenically variant erythrocyte membrane proteins 1 (PfEMP1), a major factor for cytoadherence and immune escape of the parasite. Herein, we analyzed the var gene transcript turnover in two ongoing, non-symptomatic infections at sequential time points during two weeks. The number of different circulating genomes was estimated by microsatellite analyses. In both infections, we observed a rapid turnover of plasmodial genotypes and var transcripts. The rapidly changing repertoire of var transcripts could have been caused either by swift elimination of circulating var-transcribing parasites stemming from different or identical genetic backgrounds, or by accelerated switching of var gene transcription itself.


Subject(s)
Antigenic Variation/genetics , Antigens, Protozoan/genetics , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Adult , Animals , DNA, Protozoan/genetics , Female , Genome, Protozoan , Genotype , Humans , Male , Polymerase Chain Reaction , RNA, Protozoan/genetics , Time Factors , Transcription, Genetic/genetics
6.
Rev. Inst. Med. Trop. Säo Paulo ; 47(4): 195-201, July-Aug. 2005. graf
Article in English | LILACS | ID: lil-411373

ABSTRACT

Os genes var de Plasmodium falciparum codificam as proteínas variantes da superfície do eritrócito infectado (PfEMP1). Neste estudo examinamos a mudança de transcritos destes genes var em duas infecções assintomáticas durante um curto prazo e estimamos simultaneamente o número de genomas circulantes nas mesmas amostras por análise de microssatélites. Nas duas infecções observamos uma rápida mudança de genótipos e transcritos de genes var. A mudança acelerada do repertório de transcritos possivelmente foi causada pela rápida eliminação de parasitas circulantes transcrevendo genes var a partir de genomas iguais ou diferentes, ou pela mudança acelerada da própria transcrição (switching) de genes var.


Subject(s)
Adult , Animals , Female , Humans , Male , Antigenic Variation/genetics , Antigens, Protozoan/genetics , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , DNA, Protozoan/genetics , Genome, Protozoan , Genotype , Polymerase Chain Reaction , RNA, Protozoan/genetics , Time Factors , Transcription, Genetic/genetics
7.
J Med Entomol ; 40(5): 636-41, 2003 Sep.
Article in English | MEDLINE | ID: mdl-14596276

ABSTRACT

Studies on seasonal anopheline fauna variation were performed in two distinct settlements in the State of Rondônia, Brazil: one at the Madeira River banks (Portuchuelo) with stable native Amazonian population; the other at an inland lumber-extracting farm (Urupá) in dry land, in which adults are mostly migrants. During a 6-yr period (1994-2000), 8,638 adult anophelines were collected: 2,684 in Urupá and 5,954 in Portuchuelo. Anopheles darlingi represented >95% of total mosquitoes caught. Dissection of 4,424 A. darlingi females yielded a very low sporozoite infection index below 0.1%. Oocysts were found in both localities in approximately 0.1% of dissected mosquitoes. Determination of the hour biting rates disclosed seasonal variations in both localities. However, in Portuchuelo, mosquito density peaked at the acme of the rainy season, whereas at Urupá it peaked in the dry season. The increase in mosquito density and incidence of malaria cases were coincident. The high mosquito densities observed in the riverine settlement of Portochuelo sector B, which permits evaluation in > 10,000 mosquitoes' bites/person/year, could explain, in spite of the low mosquito's infection index, the previously described development of natural immunity in the local population that is not observed in the dry land agroindustrial settlement of Urupá.


Subject(s)
Anopheles/parasitology , Malaria/transmission , Adult , Animals , Anopheles/classification , Brazil/epidemiology , Female , Geography , Humans , Malaria/epidemiology , Male , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...