Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 12: 647832, 2021.
Article in English | MEDLINE | ID: mdl-33936067

ABSTRACT

Leprosy is a disease with a clinical spectrum of presentations that is also manifested in diverse histological features. At one pole, lepromatous lesions (L-pole) have phagocytic foamy macrophages heavily parasitized with freely multiplying intracellular Mycobacterium leprae. At the other pole, the presence of epithelioid giant cells and granulomatous formation in tuberculoid lesions (T-pole) lead to the control of M. leprae replication and the containment of its spread. The mechanism that triggers this polarization is unknown, but macrophages are central in this process. Over the past few years, leprosy has been studied using large scale techniques to shed light on the basic pathways that, upon infection, rewire the host cellular metabolism and gene expression. M. leprae is particularly peculiar as it invades Schwann cells in the nerves, reprogramming their gene expression leading to a stem-like cell phenotype. This modulatory behavior exerted by M. leprae is also observed in skin macrophages. Here, we used live M. leprae to infect (10:1 multiplicity of infection) monocyte-derived macrophages (MDMs) for 48 h and analyzed the whole gene expression profile using microarrays. In this model, we observe an intense upregulation of genes consistent with a cellular immune response, with enriched pathways including peptide and protein secretion, leukocyte activation, inflammation, and cellular divalent inorganic cation homeostasis. Among the most differentially expressed genes (DEGs) are CCL5/RANTES and CYP27B1, and several members of the metallothionein and metalloproteinase families. This is consistent with a proinflammatory state that would resemble macrophage rewiring toward granulomatous formation observed at the T-pole. Furthermore, a comparison with a dataset retrieved from the Gene Expression Omnibus of M. leprae-infected Schwann cells (MOI 100:1) showed that the patterns among the DEGs are highly distinct, as the Schwann cells under these conditions had a scavenging and phagocytic gene profile similar to M2-like macrophages, with enriched pathways rearrangements in the cytoskeleton, lipid and cholesterol metabolism and upregulated genes including MVK, MSMO1, and LACC1/FAMIN. In summary, macrophages may have a central role in defining the paradigmatic cellular (T-pole) vs. humoral (L-pole) responses and it is likely that the multiplicity of infection and genetic polymorphisms in key genes are gearing this polarization.


Subject(s)
Immunity, Cellular/genetics , Leprosy, Lepromatous/genetics , Leprosy, Lepromatous/immunology , Macrophages/immunology , Macrophages/virology , Mycobacterium leprae/immunology , Transcriptome , Adult , Blood Donors , Cell Polarity/genetics , Cells, Cultured , Female , Healthy Volunteers , Humans , Leprosy, Lepromatous/microbiology , Male , Polymorphism, Single Nucleotide , Schwann Cells/immunology , Schwann Cells/virology , Young Adult
2.
Hum Immunol ; 82(1): 11-18, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33189423

ABSTRACT

Despite intense efforts, the number of new cases of leprosy has remained significantly high over the past 20 years. Host genetic background is strongly linked to the pathogenesis of this disease, which is caused by Mycobacterium leprae (M. leprae), and there is a consensus that the most significant genetic association with leprosy is attributed to the major histocompatibility complex (MHC). Here, we investigated the association of human leukocyte antigen (HLA) class I and II genes with leprosy in a Brazilian population encompassing 826 individuals from a hyperendemic area of Brazil; HLA typing of class I (-A, -B, -C) and class II (-DRB1, -DQA1, -DQB1, -DPA1, and -DPB1) loci was conducted. Initially, the associations were tested using the chi-square test, with p-values adjusted using the false discovery rate (FDR) method. Next, statistically significant signals of the associations were submitted to logistic regression analyses to adjust for sex and molecular ancestry data. The results showed that HLA-C*08, -DPB1*04, and -DPB1*18 were associated with protective effects, while HLA-C*12 and -DPB1*105 were associated with susceptibility to leprosy. Thus, our findings reveal new associations between leprosy and the HLA-DPB1 locus and confirm previous associations between the HLA-C locus and leprosy.


Subject(s)
Genetic Predisposition to Disease , HLA-C Antigens/genetics , HLA-DP beta-Chains/genetics , Leprosy/genetics , Adolescent , Adult , Aged , Alleles , Brazil/epidemiology , Case-Control Studies , Endemic Diseases , Female , Genetic Loci , HLA-C Antigens/immunology , HLA-DP beta-Chains/immunology , Humans , Leprosy/epidemiology , Leprosy/immunology , Leprosy/microbiology , Male , Middle Aged , Mycobacterium leprae/immunology , Young Adult
3.
Microbes Infect ; 22(3): 137-143, 2020 04.
Article in English | MEDLINE | ID: mdl-31770592

ABSTRACT

Paracoccidioidomycosis (PCM) is a systemic mycosis caused by thermally dimorphic fungi of the genus Paracoccidioides that affects predominantly 30-60-year-old male rural workers. The main clinical forms of the disease are acute/subacute, chronic (CF); almost all CF patients develop pulmonary fibrosis, and they also exhibit emphysema due to smoke. An important cytokine in this context, IL-1ß, different from the others, is produced by an intracellular multimolecular complex called inflammasome that is activated by pathogens and/or host signs of damage. Inflammasome has been recognized for its contribution to chronic inflammatory diseases, from that, we hypothesized that this activation could be involved in paracoccidioidomycosis, contributing to chronic inflammation. While inflammasome activation has been demonstrated in experimental models of Paracoccidioides brasiliensis infection, no information is available in patients, leading us to investigate the participation of NLRP3-inflammasome machinery in CF/PCM patients from a Brazilian endemic area. Our findings showed increased priming in mRNA levels of NLRP3 inflammasome genes by monocytes of PCM patients in vitro than healthy controls. Similar intracellular protein expression of NLRP3, CASP-1, ASC, and IL-1ß were also observed in freshly isolated monocytes of PCM patients and smoker controls. Increased expression of NLRP3 and ASC was observed in monocytes from PCM patients under hypoxia in comparison with smoker controls. For the first time, we showed that primed monocytes of CF-PCM patients were associated with enhanced expression of components of NLRP3-inflammasome due to smoke. Also, hypoxemia boosted this machinery. These findings reinforce the systemic low-grade inflammation activation observed in PCM during and after treatment.


Subject(s)
Monocytes/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Paracoccidioidomycosis/immunology , Smoking , Cell Hypoxia , Humans , Invasive Fungal Infections/immunology , Invasive Fungal Infections/microbiology , Lung Diseases, Fungal/microbiology , Monocytes/microbiology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Paracoccidioides , Paracoccidioidomycosis/microbiology , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/microbiology
4.
Hum Genet ; 133(12): 1525-32, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25367361

ABSTRACT

Leprosy is a complex disease with phenotypes strongly influenced by genetic variation. A Chinese genome-wide association study (GWAS) depicted novel genes and pathways associated with leprosy susceptibility, only partially replicated by independent studies in different ethnicities. Here, we describe the results of a validation and replication study of the Chinese GWAS in Brazilians, using a stepwise strategy that involved two family-based and three independent case-control samples, resulting in 3,614 individuals enrolled. First, we genotyped a family-based sample for 36 tag single-nucleotide polymorphisms (SNPs) of five genes located in four different candidate loci: CCDC122-LACC1, NOD2, TNFSF15 and RIPK2. Association between leprosy and tag SNPs at NOD2 (rs8057431) and CCDC122-LACC1 (rs4942254) was then replicated in three additional, independent samples (combined OR(AA) = 0.49, P = 1.39e-06; OR(CC) = 0.72, P = 0.003, respectively). These results clearly implicate the NOD2 pathway in the regulation of leprosy susceptibility across diverse populations.


Subject(s)
Leprosy/genetics , Nod2 Signaling Adaptor Protein/genetics , Adolescent , Adult , Aged , Brazil , Child , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Linkage Disequilibrium , Male , Middle Aged , Polymorphism, Single Nucleotide , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...