Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 10(5)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35632437

ABSTRACT

Control of the COVID-19 pandemic largely depends on the effectiveness of the vaccination process. An understanding of the factors that underlie the willingness to accept vaccination contributes pivotal information to controlling the pandemic. We analyzed the association between the willingness to accept the available COVID-19 vaccines and vaccine determinants amidst the Chilean vaccination process. Individual-level survey data was collected from 744 nationally representative respondents and multivariate regression models were used to estimate the association between outcome and explanatory variables. We found that trust in COVID-19 vaccines, scientists, and medical professionals significantly increased the willingness to: accept the vaccines and booster doses, as well as annual vaccinations and the vaccination of children. Our results are critical to understanding the acceptance of COVID-19 vaccines in the context of a country with one of the world's highest vaccination rates. We provide useful information for decision-making and policy design, in addition to establishing guidelines regarding how to effectively explain vaccination programs to citizens.

2.
Nucleic Acids Res ; 50(4): 2302-2318, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35137199

ABSTRACT

During retroviral replication, the full-length RNA serves both as mRNA and genomic RNA. However, the mechanisms by which the HIV-1 Gag protein selects the two RNA molecules that will be packaged into nascent virions remain poorly understood. Here, we demonstrate that deposition of N6-methyladenosine (m6A) regulates full-length RNA packaging. While m6A deposition by METTL3/METTL14 onto the full-length RNA was associated with increased Gag synthesis and reduced packaging, FTO-mediated demethylation promoted the incorporation of the full-length RNA into viral particles. Interestingly, HIV-1 Gag associates with the RNA demethylase FTO in the nucleus and contributes to full-length RNA demethylation. We further identified two highly conserved adenosines within the 5'-UTR that have a crucial functional role in m6A methylation and packaging of the full-length RNA. Together, our data propose a novel epitranscriptomic mechanism allowing the selection of the HIV-1 full-length RNA molecules that will be used as viral genomes.


Subject(s)
HIV-1 , 5' Untranslated Regions , Adenosine/genetics , Adenosine/metabolism , Gene Products, gag/genetics , HIV-1/metabolism , Methylation , RNA, Viral/genetics , RNA, Viral/metabolism , Virion/metabolism
3.
RNA Biol ; 18(5): 745-758, 2021 05.
Article in English | MEDLINE | ID: mdl-33103564

ABSTRACT

Translation initiation of the human immunodeficiency virus type-1 (HIV-1) full-length RNA has been shown to occur through cap-dependent and IRES-driven mechanisms. Previous studies suggested that the nuclear cap-binding complex (CBC) rather than eIF4E drives cap-dependent translation of the full-length RNA and we have recently reported that the CBC subunit CBP80 supports the function of the viral protein Rev during nuclear export and translation of this viral transcript. Ribosome recruitment during CBC-dependent translation of cellular mRNAs relies on the activity CBP80/20 translation initiation factor (CTIF), which bridges CBP80 and the 40S ribosomal subunit through interactions with eIF3g. Here, we report that CTIF inhibits HIV-1 and HIV-2 Gag synthesis from the full-length RNA. Our results indicate that CTIF associates with HIV-1 Rev through its N-terminal domain and is recruited onto the full-length RNA ribonucleoprotein complex in order to interfere with Gag synthesis. We also demonstrate that CTIF induces the cytoplasmic accumulation of Rev impeding the association of the viral protein with CBP80. We finally show that Rev interferes with the association of CTIF with CBP80 indicating that CTIF and Rev compete for the CBC subunit.


Subject(s)
Eukaryotic Initiation Factors/physiology , gag Gene Products, Human Immunodeficiency Virus/biosynthesis , rev Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors , Cells, Cultured , Down-Regulation , HEK293 Cells , HIV-1/genetics , HIV-1/metabolism , HeLa Cells , Humans , Jurkat Cells , Protein Biosynthesis/genetics , rev Gene Products, Human Immunodeficiency Virus/physiology
4.
Nucleic Acids Res ; 46(21): 11539-11552, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30239828

ABSTRACT

Gag synthesis from the full-length unspliced mRNA is critical for the production of the viral progeny during human immunodeficiency virus type-1 (HIV-1) replication. While most spliced mRNAs follow the canonical gene expression pathway in which the recruitment of the nuclear cap-binding complex (CBC) and the exon junction complex (EJC) largely stimulates the rates of nuclear export and translation, the unspliced mRNA relies on the viral protein Rev to reach the cytoplasm and recruit the host translational machinery. Here, we confirm that Rev ensures high levels of Gag synthesis by driving nuclear export and translation of the unspliced mRNA. These functions of Rev are supported by the CBC subunit CBP80, which binds Rev and the unspliced mRNA in the nucleus and the cytoplasm. We also demonstrate that Rev interacts with the DEAD-box RNA helicase eIF4AI, which translocates to the nucleus and cooperates with the viral protein to promote Gag synthesis. Finally, we show that the Rev/RRE axis is important for the assembly of a CBP80-eIF4AI complex onto the unspliced mRNA. Together, our results provide further evidence towards the understanding of the molecular mechanisms by which Rev drives Gag synthesis from the unspliced mRNA during HIV-1 replication.


Subject(s)
Eukaryotic Initiation Factor-4A/genetics , HIV-1/genetics , Nuclear Cap-Binding Protein Complex/genetics , RNA, Messenger/genetics , gag Gene Products, Human Immunodeficiency Virus/genetics , rev Gene Products, Human Immunodeficiency Virus/genetics , Cell Line , Eukaryotic Initiation Factor-4A/metabolism , HIV-1/metabolism , HeLa Cells , Humans , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Nuclear Cap-Binding Protein Complex/metabolism , Protein Binding , RNA Splicing , RNA, Messenger/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Virus Replication/genetics , gag Gene Products, Human Immunodeficiency Virus/biosynthesis , rev Gene Products, Human Immunodeficiency Virus/metabolism
5.
Front Microbiol ; 9: 576, 2018.
Article in English | MEDLINE | ID: mdl-29643844

ABSTRACT

N6-methyladenosine (m6A) is the most abundant internal modification present in Eukaryotic mRNA. The functions of this chemical modification are mediated by m6A-binding proteins (m6A readers) and regulated by methyltransferases (m6A writers) and demethylases (m6A erasers), which together are proposed to be responsible of a new layer of post-transcriptional control of gene expression. Despite the presence of m6A in a retroviral genome was reported more than 40 years ago, the recent development of sequencing-based technologies allowing the mapping of m6A in a transcriptome-wide manner made it possible to identify the topology and dynamics of m6A during replication of HIV-1 as well as other viruses. As such, three independent groups recently reported the presence of m6A along the HIV-1 genomic RNA (gRNA) and described the impact of cellular m6A writers, erasers and readers on different steps of viral RNA metabolism and replication. Interestingly, while two groups reported a positive role of m6A at different steps of viral gene expression it was also proposed that the presence of m6A within the gRNA reduces viral infectivity by inducing the early degradation of the incoming viral genome. This review summarizes the recent advances in this emerging field and discusses the relevance of m6A during HIV-1 replication.

6.
Biochim Biophys Acta Gene Regul Mech ; 1860(4): 460-471, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28219769

ABSTRACT

RNA plays central roles in biology and novel functions and regulation mechanisms are constantly emerging. To accomplish some of their functions within the cell, RNA molecules undergo hundreds of chemical modifications from which N6-methyladenosine (m6A), inosine (I), pseudouridine (ψ) and 5-methylcytosine (5mC) have been described in eukaryotic mRNA. Interestingly, the m6A modification was shown to be reversible, adding novel layers of regulation of gene expression through what is now recognized as epitranscriptomics. The development of molecular mapping strategies coupled to next generation sequencing allowed the identification of thousand of modified transcripts in different tissues and under different physiological conditions such as viral infections. As intracellular parasites, viruses are confronted to cellular RNA modifying enzymes and, as a consequence, viral RNA can be chemically modified at some stages of the replication cycle. This review focuses on the chemical modifications of viral RNA and the impact that these modifications have on viral gene expression and the output of infection. A special emphasis is given to m6A, which was recently shown to play important yet controversial roles in different steps of the HIV-1, HCV and ZIKV replication cycles.


Subject(s)
Epigenesis, Genetic , Transcriptome/genetics , Virus Replication/genetics , Animals , Humans , Models, Genetic , RNA Editing/genetics
7.
Biochim Biophys Acta ; 1859(5): 719-30, 2016 May.
Article in English | MEDLINE | ID: mdl-27012366

ABSTRACT

DEAD-box RNA helicase DDX3 is a host factor essential for HIV-1 replication and thus, a potential target for novel therapies aimed to overcome viral resistance. Previous studies have shown that DDX3 promotes nuclear export and translation of the HIV-1 unspliced mRNA. Although the function of DDX3 during both processes requires its catalytic activity, it is unknown whether other domains surrounding the helicase core are involved. Here, we show the involvement of the N- and C-terminal domains of DDX3 in the regulation of HIV-1 unspliced mRNA translation. Our results suggest that the intrinsically disordered N-terminal domain of DDX3 regulates its functions in translation by acting prior to the recruitment of the 43S pre-initiation complex onto the viral 5'-UTR. Interestingly, this regulation was conserved in HIV-2 and was dependent on the CRM1-dependent nuclear export pathway suggesting a role of the RNA helicase in interconnecting nuclear export with ribosome recruitment of the viral unspliced mRNA. This specific function of DDX3 during HIV gene expression could be exploited as an alternative target for pharmaceutical intervention.


Subject(s)
DEAD-box RNA Helicases/genetics , HIV Infections/genetics , HIV-1/genetics , Karyopherins/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Active Transport, Cell Nucleus/genetics , Gene Expression Regulation, Viral , HIV Infections/therapy , HIV Infections/virology , HIV-1/pathogenicity , Host-Pathogen Interactions/genetics , Humans , Protein Biosynthesis , Protein Structure, Tertiary , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Viral/genetics , Virus Replication/genetics , Exportin 1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...