Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Cell Infect Microbiol ; 12: 1047269, 2022.
Article in English | MEDLINE | ID: mdl-36530433

ABSTRACT

In the fight against malaria, the key is early treatment with antimalarial chemotherapy, such as artemisinin-based combination treatments (ACTs). However, Plasmodium has acquired multidrug resistance, including the emergence of P. falciparum strains with resistance to ACT. The development of novel antimalarial molecules, that are capable of interfering in the asexual and sexual blood stages, is important to slow down the transmission in endemic areas. In this work, we studied the ability of the mettalo copper-cinchonine complex to interfere in the sexual and asexual stages of Plasmodium. The tested compound in the in vitro assay was a cinchonine derivative, named CinCu (Bis[Cinchoninium Tetrachlorocuprate(II)]trihydrate). Its biological functions were assessed by antiplasmodial activity in vitro against chloroquine-resistant P. falciparum W2 strain. The mice model of P. berghei ANKA infection was used to analyze the antimalarial activity of CinCu and chloroquine and their acute toxicity. The oocyst formation-blocking assay was performed by experimental infection of Anopheles aquasalis with P. vivax infected blood, which was treated with different concentrations of CinCu, cinchonine, and primaquine. We found that CinCu was able to suppress as high as 81.58% of parasitemia in vitro, being considered a molecule with high antiplasmodial activity and low toxicity. The in vivo analysis showed that CinCu suppressed parasitemia at 34% up to 87.19%, being a partially active molecule against the blood-stage forms of P. berghei ANKA, without inducing severe clinical signs in the treated groups. The transmission-blocking assay revealed that both cinchonine and primaquine were able to reduce the infection intensity of P. vivax in A. aquasalis, leading to a decrease in the number of oocysts recovered from the mosquitoes' midgut. Regarding the effect of CinCu, the copper-complex was not able to induce inhibition of P. vivax infection; however, it was able to induce an important reduction in the intensity of oocyst formation by about 2.4 times. It is plausible that the metallo-compound also be able to interfere with the differentiation of parasite stages and/or ookinete-secreted chitinase into the peritrophic matrix of mosquitoes, promoting a reduction in the number of oocysts formed. Taken together, the results suggest that this compound is promising as a prototype for the development of new antimalarial drugs. Furthermore, our study can draw a new pathway for repositioning already-known antimalarial drugs by editing their chemical structure to improve the antimalarial activity against the asexual and sexual stages of the parasite.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria, Vivax , Plasmodium , Mice , Animals , Antimalarials/pharmacology , Primaquine/pharmacology , Primaquine/therapeutic use , Oocysts , Parasitemia/parasitology , Copper/pharmacology , Malaria, Falciparum/parasitology , Chloroquine/pharmacology , Plasmodium falciparum
2.
Sci Rep ; 12(1): 19442, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376491

ABSTRACT

Anopheles darlingi is the main malarial vector in the Brazilian Amazon region. An. nuneztovari s.l., An. triannulatus s.l., An. evansae, and An. benarrochi s.l. do not have a defined role as malarial vectors, although they have been found to be naturally infected with Plasmodium vivax, and some develop oocysts. In this study, we evaluated the importance of low numbers of oocysts in sporozoite salivary gland invasion and transmission. Field-collected mosquitoes were experimentally infected with P. vivax. The infection rates and oocyst and sporozoite infection intensities were evaluated and compared with those of An. aquasalis. We found the highest number of oocysts in An. darlingi (mean = 39.47) and the lowest in An. nuneztovari s.l. (mean = 2). The highest number of sporozoites was observed in An. darlingi (mean = 610) and lowest in An. benarrochi s.l. (mean = 30). Plasmodium vivax DNA was detected in the saliva of all mosquito species after a blood meal. Regardless of the number of oocysts, all species transmitted sporozoites during blood meals. Considering the abundance of these mosquitoes and transmission of sporozoites, it is logical to assume that An. nuneztovari s.l. and An. triannulatus s.l. are involved in the transmission of P. vivax.


Subject(s)
Anopheles , Malaria , Plasmodium vivax , Animals , Malaria, Vivax , Meals , Mosquito Vectors , Oocysts , Sporozoites
3.
Mem Inst Oswaldo Cruz ; 116: e200427, 2021.
Article in English | MEDLINE | ID: mdl-34259735

ABSTRACT

BACKGROUND: Trypanosomatids are widespread and cause diseases - such as trypanosomiasis, sleeping sickness, Chagas disease, and cutaneous and visceral leishmaniasis - in animals and humans. These diseases occur in both rural and urban regions due to unplanned growth and deforestation. Thus, wild and synanthropic reservoir hosts living in residential areas are risk factors. OBJECTIVE: We aimed to evaluate the diversity of small mammals (rodents and marsupials), and the occurrence of trypanosomatids, especially Leishmania, in the rural settlement of Presidente Figueiredo, Amazonas. METHODS: Animals were collected using Sherman, Tomahawk, and Pitfall traps along 16 trails in four landscapes: continuous forest, forest with planting, planting, and peridomiciliar. Leishmania sp. was detected in liver samples by polymerase chain reaction targeting kDNA. FINDINGS: Diversity was higher in forests with planting and lower around residences. In total, 135 mammals (81 rodents and 54 marsupials covering 14 genera) were captured. Rodents presented infection rates (IR) of 74% and marsupials of 48%. Rodents in domicile landscapes presented a higher IR (92.9%), while marsupials showed a higher IR in forests (53.3%). MAIN CONCLUSIONS: The results suggest high prevalence of trypanosomatids across 12 mammalian genera possibly involved as reservoir hosts in the enzootic transmission of leishmaniasis in the Amazon's rural, peridomiciliar landscape.


Subject(s)
Leishmania , Marsupialia , Animals , Brazil/epidemiology , Leishmania/genetics , Mammals , Rodentia
4.
PLoS One ; 16(2): e0246932, 2021.
Article in English | MEDLINE | ID: mdl-33592052

ABSTRACT

Mosquito diversity and disease transmission are influenced by landscape modifications, i.e., vectors and pathogens previously found only in forests are now found close to human environments due to anthropic changes. This study determined the diversity and distribution of mosquitoes in forest environments in order to analyze the potential vectors of Amazonian forest arboviruses. Mosquitoes were collected by 1) vertical stratification from forest canopy and ground areas using Hooper Pugedo (HP) light traps and human attraction and 2) horizontal stratification using HP light traps in peridomicile, forest edge, and forest environments near the Rio Pardo rural settlement, Amazonas, Brazil. A total of 3,750 mosquitoes were collected, representing 46 species. 3,139 individuals representing 46 species were sampled by vertical stratification. Both the Shannon-Weaver diversity index (H') and equitability (J') were higher in the canopy than on the ground. 611 individuals representing 13 species were sampled by horizontal stratification. H' decreased in the following order: forest edge > forest > peridomicile, and J' was greater at the forest edge and smaller in the peridomicile environment. Moreover, H' was higher for the human attraction collection method than the HP traps. A total of 671 pools were analyzed by RT-qPCR; three species were positive for Oropouche-like viruses (Ochlerotatus serratus, Psorophora cingulata, and Haemagogus tropicalis) and the minimum infection rate was 0.8%. The composition of mosquito species did not differ significantly between anthropic and forest environments in Rio Pardo. Some mosquito species, due to their abundance, dispersion in the three environments, and record of natural infection, were hypothesized to participate in the arbovirus transmission cycle in this Amazonian rural settlement.


Subject(s)
Arboviruses/physiology , Biodiversity , Culicidae/virology , Forests , Rural Population , Animals , Brazil , Culicidae/classification , Humans
5.
Exp Parasitol ; 222: 108064, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33421382

ABSTRACT

Experimental studies for understanding the relationship between Plasmodium vivax and its vector hosts are difficult, because of to the lack of a long-term, in vitro continuous culture system unavailability of infected blood samples, seasonality of the disease, and the concentration of most cases in remote areas. This study evaluates the duration of the infectivity of P. vivax to Anopheles aquasalis after collecting blood from malaria-infected patients. Blood was collected from patients and stored at 4 °C and 37 °C. Every day, for 4 days, the blood was fed to An. aquasalis adult females, and a Giemsa-stained thick blood smear was mounted to account for sexual (gametocytes) and asexual (trophozoites and schizonts) stages and calculate parasitemia. Oocysts in the midgut of the mosquitoes were counted on the seventh day after feeding. Kruskal-Wallis test was used to compare the mean number of oocysts (MO) and the parasite density (PD) in each storage condition and post-infection time-points. The Mann-Whitney test was used to compare the number of oocysts for each day between temperatures. The results show that P. vivax stored at 4 °C and at 37 °C has its infectivity to An. aquasalis preserved for 2 days and 3 days, respectively. Infection rate (IR), PD and MO were higher on the day of blood collection and decreased gradually over time. The parasite density (number of parasites/µL) diminished faster at 4 °C than at 37 °C. In this study, a preservation protocol is shown for long-lasting infectivity of P. vivax in a blood sample taken from malaria-infected patients. These results show that infectivity of P. vivax stored at 4 °C and at 37 °C to An. aquasalis persist until 3 days after blood collection, but parasite density, infection rate, and mean of oocysts decreased 24h after blood collection. Since the malaria cases are increasingly far from the urban areas these results indicate that is possible, losing some infectivity, to realize experimental infections several dozen hours after the blood collection. However, it is necessary to improve the procedures for preserving P. vivax gametocytes for mosquito infection in the laboratory.


Subject(s)
Anopheles/parasitology , Malaria, Vivax/parasitology , Mosquito Vectors/parasitology , Plasmodium vivax/physiology , Adult , Aged , Animals , Brazil , Female , Humans , Malaria, Vivax/blood , Malaria, Vivax/transmission , Male , Middle Aged , Plasmodium vivax/pathogenicity , Rural Population , Temperature , Time Factors , Young Adult
6.
Rev Soc Bras Med Trop ; 53: e20200067, 2020.
Article in English | MEDLINE | ID: mdl-32428176

ABSTRACT

INTRODUCTION: The Culicoides transmit a variety of pathogens. Our aim was to survey the Culicoides species occurring in an Amazonian rural settlement, comparing abundance, richness, and diversity in different environments. METHODS: Culicoides were captured using CDC light traps. The Shannon-Wiener (H') and Rényi indices were used to compare species diversity and evenness between environments, the equitability (J') index was used to calculate the uniformity of distribution among species, and similarity was estimated using the Jaccard similarity index. A permutational multivariate analysis of variance was applied to assess the influence of environment on species composition. A non-metric dimensional scale was used to represent the diversity profiles of each environment in a multidimensional space. RESULTS: 6.078 Culicoides were captured, representing 84 species (45 valid species/39 morphotypes). H' values showed the following gradient: forest > capoeira > peridomicile > forest edge. The equitability J' was greater in capoeira and forests compared to peridomiciles and the forest edge. The population compositions of each environment differed statistically, but rarefaction estimates indicate that environments of the same type possessed similar levels of richness. Species of medical and veterinary importance were found primarily in peridomiciles: C. paraensis, vector of Oropouche virus; C. insignis and C. pusillus, vectors of Bluetongue virus; C. filariferus, C. flavivenula, C. foxi, and C. ignacioi, found carrying Leishmania DNA. CONCLUSIONS: This study indicates that diversity was higher in natural environments than in anthropized environments, while abundance and richness were highest in the most anthropized environment. These findings suggest that strictly wild Culicoides can adapt to anthropized environments.


Subject(s)
Biodiversity , Ceratopogonidae/classification , Insect Vectors/classification , Animals , Brazil , Female , Male , Population Density , Rural Population , Seasons
7.
Rev. Soc. Bras. Med. Trop ; 53: e20200067, 2020. tab, graf
Article in English | Sec. Est. Saúde SP, Coleciona SUS, LILACS | ID: biblio-1136897

ABSTRACT

Abstract INTRODUCTION: The Culicoides transmit a variety of pathogens. Our aim was to survey the Culicoides species occurring in an Amazonian rural settlement, comparing abundance, richness, and diversity in different environments. METHODS: Culicoides were captured using CDC light traps. The Shannon-Wiener (H') and Rényi indices were used to compare species diversity and evenness between environments, the equitability (J') index was used to calculate the uniformity of distribution among species, and similarity was estimated using the Jaccard similarity index. A permutational multivariate analysis of variance was applied to assess the influence of environment on species composition. A non-metric dimensional scale was used to represent the diversity profiles of each environment in a multidimensional space. RESULTS: 6.078 Culicoides were captured, representing 84 species (45 valid species/39 morphotypes). H' values showed the following gradient: forest > capoeira > peridomicile > forest edge. The equitability J' was greater in capoeira and forests compared to peridomiciles and the forest edge. The population compositions of each environment differed statistically, but rarefaction estimates indicate that environments of the same type possessed similar levels of richness. Species of medical and veterinary importance were found primarily in peridomiciles: C. paraensis, vector of Oropouche virus; C. insignis and C. pusillus, vectors of Bluetongue virus; C. filariferus, C. flavivenula, C. foxi, and C. ignacioi, found carrying Leishmania DNA. CONCLUSIONS: This study indicates that diversity was higher in natural environments than in anthropized environments, while abundance and richness were highest in the most anthropized environment. These findings suggest that strictly wild Culicoides can adapt to anthropized environments.


Subject(s)
Animals , Male , Female , Ceratopogonidae/classification , Biodiversity , Insect Vectors/classification , Rural Population , Seasons , Brazil , Population Density
8.
PLoS Negl Trop Dis ; 13(4): e0007234, 2019 04.
Article in English | MEDLINE | ID: mdl-30933979

ABSTRACT

BACKGROUND: Standard human landing catches (sHLCs) have historically been a key component of Onchocerca volvulus transmission monitoring, but expose health-workers to potentially hazardous vector bites. Novel human-bait-free trapping methods have been developed, but do not always work where they are needed and may not generate O. volvulus surveillance data that is directly comparable with historic data. METHODOLOGY: Simuliid sHLCs and mineral-oil protected HLCs (mopHLCs) were performed in a rural village of Amazonas state, Brazil. A four-hour direct comparisons of sHLCs and mopHLCs was carried-out using six vector collectors, each of whom used one leg for a sHLC and one for a mopHLC. Two-person collection teams then exclusively performed either mopHLCs or sHLCs for a further set of 12 four-hour collections. Following the completion of all collections, simuliid-bite mark estimates were made from legs used exclusively in sHLCs and legs used exclusively in mopHLCs. PRINCIPAL FINDINGS: All of the 1669 captured simuliids were identified as the O. volvulus vector Simulium oyapockense. Overall, mopHLC simuliids captured per hour (S/H) rates were lower than those obtained with sHLC trapping (15.5 S/H versus 20 S/H). Direct comparisons of simuliid capture rates found that vector-collectors captured simuliids significantly more efficiently ([Formula: see text]: 20.5 S/H) with mopHLC trapping than with sHLC trapping ([Formula: see text]: 16.4 S/H): P-value = 0.002. MopHLCs performed in isolation were, however, observed to capture vectors less efficiently ([Formula: see text]: 13.4 S/H) than sHLCs performed under similar conditions ([Formula: see text]: 19.98 S/H). All six vector collectors had significantly higher simuliid capture per counted bite mark (SC/CBM) rates using mopHLCs than they were observe to have using sHLCs ([Formula: see text]: 21 SC/CBM versus [Formula: see text]: 1 SC/CBM; p-value = 0.03125). CONCLUSIONS: Vector collectors captured significantly more simuliids per counted bite mark with mopHLCs than with sHLCs. Further investigations into the utility of mopHLCs for onchocerciasis xenomonitoring and beyond are merited.


Subject(s)
Bites and Stings/prevention & control , Insect Vectors , Mineral Oil/administration & dosage , Onchocerciasis/prevention & control , Simuliidae , Skin/drug effects , Administration, Topical , Animals , Brazil , Health Personnel , Humans , Insect Vectors/parasitology , Onchocerca volvulus , Onchocerciasis/transmission , Rural Population , Simuliidae/parasitology
9.
Mem. Inst. Oswaldo Cruz ; 113(1): 56-61, Jan. 2018. tab, graf
Article in English | LILACS | ID: biblio-894885

ABSTRACT

BACKGROUND Aedes aegypti is considered the main Zika virus (ZIKV) vector, and is thought to be responsible for the 2015-2016 outbreak in Brazil. Zika positive Ae. aegypti males collected in the field suggest that vertical and/or venereal transmission of ZIKV may occur. OBJECTIVES In this study, we aimed to demonstrate that venereal transmission of ZIKV by Ae. aegypti can occur under laboratory conditions. METHODS Ae. aegypti collected in the city of Manaus, confirmed as negative for Zika, Dengue and Chikungunya virus by reverse transcription real-time polymerase chain reaction (RT-qPCR) (AaM3V- strain), were reared under laboratory conditions and used for the experiments. The ZIKV used in this study was isolated from a patient presenting with symptoms; ZIKV was confirmed by RT-qPCR. Experiment 1: virgin male mosquitoes of AaM3V- strain were intrathoracically inoculated with a ZIKV suspension; four days after injection, they were transferred to a cage containing virgin females of AaM3V- strain and left to copulate for five days. Experiment 2: virgin female mosquitoes of AaM3V- strain were orally infected with a ZIKV suspension by blood feeding membrane assay; nine days after blood feeding, they were placed in cages with Ae. aegypti AaM3V- virgin males and left to copulate for four days. After copulation, all mosquitoes were individually evaluated for viral infection by RT-qPCR. FINDINGS The mean infection rate in Experiment 1 and Experiment 2 was 45% and 35%, respectively. In both experiments, cycle threshold values ranged from 13 to 35, indicating the presence of viral genomes. MAIN CONCLUSION Ae. aegypti males intrathoracically inoculated with a ZIKV suspension are infected and can transmit the virus to uninfected females by mating. Moreover, Ae. aegypti females orally infected with a ZIKV suspension can transmit the virus to uninfected males by copulation. This study shows that ZIKV infection of Ae. aegypti mosquitoes occurs not only during blood feeding, but also during copulation.


Subject(s)
Animals , Sexually Transmitted Diseases/veterinary , Aedes/virology , Zika Virus/isolation & purification , Zika Virus/physiology , Copulation , Reverse Transcriptase Polymerase Chain Reaction
10.
Mem Inst Oswaldo Cruz ; 113(1): 56-61, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29185595

ABSTRACT

BACKGROUND: Aedes aegypti is considered the main Zika virus (ZIKV) vector, and is thought to be responsible for the 2015-2016 outbreak in Brazil. Zika positive Ae. aegypti males collected in the field suggest that vertical and/or venereal transmission of ZIKV may occur. OBJECTIVES: In this study, we aimed to demonstrate that venereal transmission of ZIKV by Ae. aegypti can occur under laboratory conditions. METHODS: Ae. aegypti collected in the city of Manaus, confirmed as negative for Zika, Dengue and Chikungunya virus by reverse transcription real-time polymerase chain reaction (RT-qPCR) (AaM3V- strain), were reared under laboratory conditions and used for the experiments. The ZIKV used in this study was isolated from a patient presenting with symptoms; ZIKV was confirmed by RT-qPCR. Experiment 1: virgin male mosquitoes of AaM3V- strain were intrathoracically inoculated with a ZIKV suspension; four days after injection, they were transferred to a cage containing virgin females of AaM3V- strain and left to copulate for five days. Experiment 2: virgin female mosquitoes of AaM3V- strain were orally infected with a ZIKV suspension by blood feeding membrane assay; nine days after blood feeding, they were placed in cages with Ae. aegypti AaM3V- virgin males and left to copulate for four days. After copulation, all mosquitoes were individually evaluated for viral infection by RT-qPCR. FINDINGS: The mean infection rate in Experiment 1 and Experiment 2 was 45% and 35%, respectively. In both experiments, cycle threshold values ranged from 13 to 35, indicating the presence of viral genomes. MAIN CONCLUSION: Ae. aegypti males intrathoracically inoculated with a ZIKV suspension are infected and can transmit the virus to uninfected females by mating. Moreover, Ae. aegypti females orally infected with a ZIKV suspension can transmit the virus to uninfected males by copulation. This study shows that ZIKV infection of Ae. aegypti mosquitoes occurs not only during blood feeding, but also during copulation.


Subject(s)
Aedes/virology , Sexually Transmitted Diseases/veterinary , Zika Virus/growth & development , Animals , Copulation , Female , Male , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Zika Virus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...