Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(9)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37763926

ABSTRACT

Nanoscale liposomes have been extensively researched and employed clinically for the delivery of biologically active compounds, including chemotherapy drugs and vaccines, offering improved pharmacokinetic behaviour and therapeutic outcomes. Traditional laboratory-scale production methods often suffer from limited control over liposome properties (e.g., size and lamellarity) and rely on laborious multistep procedures, which may limit pre-clinical research developments and innovation in this area. The widespread adoption of alternative, more controllable microfluidic-based methods is often hindered by complexities and costs associated with device manufacturing and operation, as well as the short device lifetime and the relatively low liposome production rates in some cases. In this study, we demonstrated the production of liposomes comprising therapeutically relevant lipid formulations, using a cost-effective 3D-printed reactor-in-a-centrifuge (RIAC) device. By adjusting formulation- and production-related parameters, including the concentration of polyethylene glycol (PEG), temperature, centrifugation time and speed, and lipid concentration, the mean size of the produced liposomes could be tuned in the range of 140 to 200 nm. By combining selected experimental parameters, the method was capable of producing liposomes with a therapeutically relevant mean size of ~174 nm with narrow size distribution (polydispersity index, PDI ~0.1) at a production rate of >8 mg/min. The flow-through method proposed in this study has potential to become an effective and versatile laboratory-scale approach to simplify the synthesis of therapeutic liposomal formulations.

2.
Neuro Oncol ; 23(7): 1087-1099, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33508126

ABSTRACT

BACKGROUND: Genome-wide DNA methylation profiling has recently been developed into a tool that allows tumor classification in central nervous system tumors. Extracellular vesicles (EVs) are released by tumor cells and contain high molecular weight DNA, rendering EVs a potential biomarker source to identify tumor subgroups, stratify patients and monitor therapy by liquid biopsy. We investigated whether the DNA in glioblastoma cell-derived EVs reflects genome-wide tumor methylation and mutational profiles and allows noninvasive tumor subtype classification. METHODS: DNA was isolated from EVs secreted by glioblastoma cells as well as from matching cultured cells and tumors. EV-DNA was localized and quantified by direct stochastic optical reconstruction microscopy. Methylation and copy number profiling was performed using 850k arrays. Mutations were identified by targeted gene panel sequencing. Proteins were differentially quantified by mass spectrometric proteomics. RESULTS: Genome-wide methylation profiling of glioblastoma-derived EVs correctly identified the methylation class of the parental cells and original tumors, including the MGMT promoter methylation status. Tumor-specific mutations and copy number variations (CNV) were detected in EV-DNA with high accuracy. Different EV isolation techniques did not affect the methylation profiling and CNV results. DNA was present inside EVs and on the EV surface. Proteome analysis did not allow specific tumor identification or classification but identified tumor-associated proteins that could potentially be useful for enriching tumor-derived circulating EVs from biofluids. CONCLUSIONS: This study provides proof of principle that EV-DNA reflects the genome-wide methylation, CNV, and mutational status of glioblastoma cells and enables their molecular classification.


Subject(s)
Brain Neoplasms , Extracellular Vesicles , Glioblastoma , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , DNA/metabolism , DNA Copy Number Variations , DNA Methylation , Extracellular Vesicles/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Methylation
3.
Langmuir ; 36(23): 6388-6398, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32407094

ABSTRACT

Studies on the bioeffects produced by ultrasound and microbubbles have focused primarily on transport in bulk tissue, drug uptake by individual cells, and disruption of biological membranes. Relatively little is known about the physical perturbations and fluid dynamics of the intracellular environment during ultrasound exposure. To investigate this, a custom acoustofluidic chamber was designed to expose model cells, in the form of giant unilamellar vesicles, to ultrasound and microbubbles. The motion of fluorescent tracer beads within the lumen of the vesicles was tracked during exposure to laminar flow (∼1 mm s-1), ultrasound (1 MHz, ∼150 kPa, 60 s), and phospholipid-coated microbubbles, alone and in combination. To decouple the effects of fluid flow and ultrasound exposure, the system was also modeled numerically by using boundary-driven streaming field equations. Both the experimental and numerical results indicate that all conditions produced internal streaming within the vesicles. Ultrasound alone produced an average bead velocity of 6.5 ± 1.3 µm/s, which increased to 8.5 ± 3.8 µm/s in the presence of microbubbles compared to 12 ± 0.12 µm/s under laminar flow. Further research on intracellular forces in mammalian cells and the associated biological effects in vitro and in vivo are required to fully determine the implications for safety and/or therapy.

4.
Neuroscience ; 404: 165-174, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30817953

ABSTRACT

Peripheral nerves contain neuron fibers vital for movement and sensation and are subject to continuous elongation and compression during everyday movement. At supraphysiological strains conduction blocks occur, resulting in permanent or temporary loss of function. The mechanisms underpinning these alterations in electrophysiological activity remain unclear; however, there is evidence that both ion channels and network synapses may be affected through cell membrane transmitted strain. The aim of this work was to quantify the changes in spontaneous activity resulting from application of uniaxial strain in a human iPS-derived motor neuron culture model, and to investigate the role of cell membrane mechanical properties during cell straining. Increasing strain in a custom-built cell-stretching device caused a linear decrease in spontaneous activity, and no immediate recovery of activity was observed after strain release. Imaging neuronal membranes with c-Laurdan showed changes to the lipid order in neural membranes during deformation with a decrease in lipid packing. Neural cell membrane stiffness can be modulated by increasing cholesterol content, resulting in reduced stretch-induced decrease of membrane lipid packing and in a reduced decrease in spontaneous activity caused by mechanical strain. Together these results indicate that the mechanism whereby cell injury causes impaired transmission of neural impulses may be governed by the mechanical state of the cell membrane, and contribute to establishing a direct relationship between neural uniaxial straining and loss of spontaneous neural activity.


Subject(s)
Action Potentials/physiology , Cell Membrane/physiology , Electrophysiological Phenomena/physiology , Induced Pluripotent Stem Cells/physiology , Motor Neurons/physiology , Stress, Mechanical , Cells, Cultured , Humans
5.
Langmuir ; 35(31): 10014-10024, 2019 08 06.
Article in English | MEDLINE | ID: mdl-30485112

ABSTRACT

Phospholipid coated microbubbles are currently in widespread clinical use as ultrasound contrast agents and under investigation for therapeutic applications. Previous studies have demonstrated the importance of the coating nanostructure in determining microbubble stability and its dependence upon both composition and processing method. While the influence of different phospholipids has been widely investigated, the role of other constituents such as emulsifiers has received comparatively little attention. Herein, we present an examination of the impact of polyethylene glycol (PEG) derivatives upon microbubble structure and properties. We present data using both pegylated phospholipids and a fluorescent PEG-40-stearate analogue synthesized in-house to directly observe its distribution in the microbubble coating. We examined microbubbles of clinically relevant sizes, investigating both their surface properties and population size distribution and stability. Domain formation was observed only on the surface of larger microbubbles, which were found to contain a higher concentration of PEG-40-stearate. Lipid analogue dyes were also found to influence domain formation compared with PEG-40-stearate alone. "Squeezing out" of PEG-40-stearate was not observed from any of the microbubble sizes investigated. At ambient temperature, microbubbles formulated with DSPE-PEG(2000) were found to be more stable than those containing PEG-40-stearate. At 37 °C, however, the stability in serum was found to be the same for both formulations, and no difference in acoustic backscatter was detected. This could potentially reduce the cost of PEGylated microbubbles and facilitate simpler attachment of targeting or therapeutic species. However, whether PEG-40-stearate sufficiently shields microbubbles to inhibit physiological clearance mechanisms still requires investigation.

6.
ACS Omega ; 2(3): 994-1002, 2017 Mar 31.
Article in English | MEDLINE | ID: mdl-28393132

ABSTRACT

Giant unilamellar vesicles (GUVs) are well-established model systems for studying membrane structure and dynamics. Electroformation, also referred to as electroswelling, is one of the most prevalent methods for producing GUVs, as it enables modulation of the lipid hydration process to form relatively monodisperse, defect-free vesicles. Currently, however, it is expensive and time-consuming compared with other methods. In this study, we demonstrate that 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine GUVs can be prepared readily at a fraction of the cost on stainless steel electrodes, such as commercially available syringe needles, without any evidence of lipid oxidation or hydrolysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...