Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurol Int ; 15(2): 649-660, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37218980

ABSTRACT

In this paper, the data are presented concerning different reactions to seven daily injections of atomoxetine in two mouse strains differing in relative brain weight. Atomoxetine affected the performance in a puzzle-box cognitive test in a complicated way-the large brain mice were less successful at task solutions (presumably because they were not afraid of the brightly lit test box), while the small brain strain of atomoxetine treated mice solved the task more successfully. The behavior of all atomoxetine treated animals was more active in an aversive situation (an unescapable slippery funnel, (analogous to the Porsolt test) and the time of immobility decreased significantly in all atomoxetine treated mice. The general patterns of behavioral reactions to atomoxetine in the cognitive test and other interstrain differences demonstrated in these experiments made it possible to suggest that differences in ascending noradrenergic projections between the two strains used exist. Further analysis of the noradrenergic system in these strains is needed (and further analysis of the effects of drugs which affect noradrenergic receptors).

2.
Epilepsy Behav ; 68: 95-102, 2017 03.
Article in English | MEDLINE | ID: mdl-28135595

ABSTRACT

BACKGROUND: Anxiety and depression are the most frequent comorbidities of different types of convulsive and non-convulsive epilepsies. Increased anxiety and depression-like phenotype have been described in the genetic absence epilepsy models as well as in models of limbic epilepsy and acquired seizure models, suggesting a neurobiological connection. However, whether anxiety and/or depression are comorbid to audiogenic epilepsy remains unclear. The aim of this study was to investigate whether anxiety or depression-like behavior can be found in rat strains with different susceptibility to audiogenic seizures (AS) and whether chronic fluoxetine treatment affects this co-morbidity. METHODS: Behavior in the elevated plus-maze and the forced swimming test was studied in four strains: Wistar rats non-susceptible to AS; Krushinsky-Molodkina (KM) strain, selectively bred for AS propensity from outbred Wistar rats; and a selection lines bred for maximal AS expression (strain "4") and for a lack of AS (strain "0") from KM×Wistar F2 hybrids. Effects of chronic antidepressant treatment on AS and behavior were also evaluated. RESULTS: Anxiety and depression levels were higher in KM rats (with AS) compared with Wistar rats (without AS), indicating the comorbidity with AS. However, in strains "4" and "0" with contrasting AS expression, but with a genetic background close to KM rats, anxiety and depression were not as divergent as in KMs versus Wistars. Fluoxetine treatment exerted an antidepressant effect in all rat strains irrespective of its effect on AS. CONCLUSIONS: Genetic background contributes substantively to the co-morbidity of anxiety and depression with AS propensity.


Subject(s)
Antidepressive Agents/therapeutic use , Anxiety/genetics , Depression/genetics , Epilepsy, Reflex/genetics , Fluoxetine/therapeutic use , Genetic Background , Seizures/genetics , Animals , Anxiety/complications , Depression/complications , Disease Models, Animal , Epilepsy, Reflex/complications , Male , Rats , Rats, Wistar , Seizures/complications
3.
Article in English | MEDLINE | ID: mdl-15093966

ABSTRACT

Principal component analysis of behavioural measures together with body and brain weight of hybrid F2 mice crosses between two lines selected for large (LB) and small (SB) brain weight yielded eight-factor solution explaining 75.1% of total variance. Two of eight factors had sufficient loading on brain weight and several behavioural measures. The factor analysis showed that, among F2 hybrids, mice with larger brain weight were characterised, in open-field test, by higher scores of locomotion in the periphery of arena and of rearing, as well as less frequent grooming and freezing than mice with smaller brain weight. F2 hybrids with larger brain weight moved faster and displayed stereotyped behaviour in the cross-maze test more frequently. In general, this diversity is in accord with the behaviour differences between parent LB and SB lines. The results show that, in mice fear-anxiety and stereotypic behaviours, which are known to interfere with normal exploration and learning of the environment, are causally connected with brain weight.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Exploratory Behavior/physiology , Animals , Anxiety/genetics , Anxiety/psychology , Body Weight/physiology , Fear/psychology , Genotype , Male , Mice , Mice, Inbred Strains , Multivariate Analysis , Organ Size , Species Specificity , Stereotyped Behavior/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...