Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Gastroenterol Hepatol ; 16(5): 685-709, 2023.
Article in English | MEDLINE | ID: mdl-37460041

ABSTRACT

BACKGROUND & AIMS: Alcohol-associated liver disease (ALD) represents a spectrum of alcohol use-related liver diseases. Outside of alcohol abstinence, there are currently no Food and Drug Administration-approved treatments for advanced ALD, necessitating a greater understanding of ALD pathogenesis and potential molecular targets for therapeutic intervention. The ABL-family proteins, including ABL1 and ABL2, are non-receptor tyrosine kinases that participate in a diverse set of cellular functions. We investigated the role of the ABL kinases in alcohol-associated liver disease. METHODS: We used samples from patients with ALD compared with healthy controls to elucidate a clinical phenotype. We established strains of liver-specific Abl1 and Abl2 knockout mice and subjected them to the National Institute on Alcohol Abuse and Alcoholism acute-on-chronic alcohol feeding regimen. Murine samples were subjected to RNA sequencing, AST, Oil Red O staining, H&E staining, Western blotting, and quantitative polymerase chain reaction to assess phenotypic changes after alcohol feeding. In vitro modeling in HepG2 cells as well as primary hepatocytes from C57BL6/J mice was used to establish this mechanistic link of ALD pathogenesis. RESULTS: We demonstrate that the ABL kinases are highly activated in ALD patient liver samples as well as in liver tissues from mice subjected to an alcohol feeding regimen. We found that the liver-specific knockout of Abl2, but not Abl1, attenuated alcohol-induced steatosis, liver injury, and inflammation. Subsequent RNA sequencing and gene set enrichment analyses of mouse liver tissues revealed that relative to wild-type alcohol-fed mice, Abl2 knockout alcohol-fed mice exhibited numerous pathway changes, including significantly decreased peroxisome proliferator activated receptor (PPAR) signaling. Further examination revealed that PPARγ, a previously identified regulator of ALD pathogenesis, was induced upon alcohol feeding in wild-type mice, but not in Abl2 knockout mice. In vitro analyses revealed that shRNA-mediated knockdown of ABL2 abolished the alcohol-induced accumulation of PPARγ as well as subsequent lipid accumulation. Conversely, forced overexpression of ABL2 resulted in increased PPARγ protein expression. Furthermore, we demonstrated that the regulation of hypoxia inducible factor 1 subunit alpha (HIF1α) by ABL2 is required for alcohol-induced PPARγ expression. Furthermore, treatment with ABL kinase inhibitors attenuated alcohol-induced PPARγ expression, lipid droplet formation, and liver injury. CONCLUSIONS: On the basis of our current evidence, we propose that alcohol-induced ABL2 activation promotes ALD through increasing HIF1α and the subsequent PPARγ expression, and ABL2 inhibition may serve as a promising target for the treatment of ALD.


Subject(s)
Liver Diseases, Alcoholic , PPAR gamma , Humans , Animals , Mice , Liver Diseases, Alcoholic/pathology , Ethanol/toxicity , Mice, Knockout , Tyrosine
2.
Cell Rep ; 34(8): 108765, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33626345

ABSTRACT

Hepatocellular carcinoma (HCC) remains one of the deadliest malignancies worldwide. One major obstacle to treatment is a lack of effective molecular-targeted therapies. In this study, we find that EphA2 expression and signaling are enriched in human HCC and associated with poor prognosis. Loss of EphA2 suppresses the initiation and growth of HCC both in vitro and in vivo. Furthermore, CRISPR/CAS9-mediated EphA2 inhibition significantly delays tumor development in a genetically engineered murine model of HCC. Mechanistically, we discover that targeting EphA2 suppresses both AKT and JAK1/STAT3 signaling, two separate oncogenic pathways in HCC. We also identify a small molecule kinase inhibitor of EphA2 that suppresses tumor progression in a murine HCC model. Together, our results suggest EphA2 as a promising therapeutic target for HCC.


Subject(s)
Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Carcinoma, Hepatocellular/drug therapy , Janus Kinase 1/metabolism , Liver Neoplasms/drug therapy , Niacinamide/analogs & derivatives , Proto-Oncogene Proteins c-akt/metabolism , Receptor, EphA2/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , Animals , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Databases, Genetic , Female , Gene Expression Regulation, Neoplastic , Humans , Janus Kinase 1/genetics , Liver Neoplasms/enzymology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Mice, Inbred C57BL , Molecular Targeted Therapy , Niacinamide/pharmacology , Phosphorylation , Receptor, EphA2/genetics , Receptor, EphA2/metabolism , Retrospective Studies , STAT3 Transcription Factor/genetics , Signal Transduction , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
3.
Gastroenterology ; 159(1): 289-305.e16, 2020 07.
Article in English | MEDLINE | ID: mdl-32171747

ABSTRACT

BACKGROUND & AIMS: We investigated whether ABL proto-oncogene 1, non-receptor tyrosine kinase (ABL1) is involved in development of hepatocellular carcinoma (HCC). METHODS: We analyzed clinical and gene expression data from The Cancer Genome Atlas. Albumin-Cre (HepWT) mice and mice with hepatocyte-specific disruption of Abl1 (HepAbl-/- mice) were given hydrodynamic injections of plasmids encoding the Sleeping Beauty transposase and transposons with the MET gene and a catenin ß1 gene with an N-terminal truncation, which induces development of liver tumors. Some mice were then gavaged with the ABL1 inhibitor nilotinib or vehicle (control) daily for 4 weeks. We knocked down ABL1 with short hairpin RNAs in Hep3B and Huh7 HCC cells and analyzed their proliferation and growth as xenograft tumors in mice. We performed RNA sequencing and gene set enrichment analysis of tumors. We knocked down or overexpressed NOTCH1 and MYC in HCC cells and analyzed proliferation. We measured levels of phosphorylated ABL1, MYC, and NOTCH1 by immunohistochemical analysis of an HCC tissue microarray. RESULTS: HCC tissues had higher levels of ABL1 than non-tumor liver tissues, which correlated with shorter survival times of patients. HepWT mice with the MET and catenin ß1 transposons developed liver tumors and survived a median 64 days; HepAbl-/- mice with these transposons developed tumors that were 50% smaller and survived a median 81 days. Knockdown of ABL1 in human HCC cells reduced proliferation, growth as xenograft tumors in mice, and expression of MYC, which reduced expression of NOTCH1. Knockdown of NOTCH1 or MYC in HCC cells significantly reduced cell growth. NOTCH1 or MYC overexpression in human HCC cells promoted proliferation and rescued the phenotype caused by ABL1 knockdown. The level of phosphorylated (activated) ABL1 correlated with levels of MYC and NOTCH1 in human HCC specimens. Nilotinib decreased expression of MYC and NOTCH1 in HCC cell lines, reduced the growth of xenograft tumors in mice, and slowed growth of liver tumors in mice with MET and catenin ß1 transposons, reducing tumor levels of MYC and NOTCH1. CONCLUSIONS: HCC samples have increased levels of ABL1 compared with nontumor liver tissues, and increased levels of ABL1 correlate with shorter survival times of patients. Loss or inhibition of ABL1 reduces proliferation of HCC cells and slows growth of liver tumors in mice. Inhibitors of ABL1 might be used for treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Proto-Oncogene Proteins c-abl/metabolism , Receptor, Notch1/metabolism , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Datasets as Topic , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Humans , Kaplan-Meier Estimate , Liver/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Male , Mice , Phosphorylation , Prognosis , Proto-Oncogene Mas , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Proto-Oncogene Proteins c-abl/genetics , Proto-Oncogene Proteins c-myc/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Receptor, Notch1/genetics , Xenograft Model Antitumor Assays
4.
Hepatology ; 70(5): 1631-1645, 2019 11.
Article in English | MEDLINE | ID: mdl-31069844

ABSTRACT

There is an urgent need to understand the molecular signaling pathways that drive or mediate the development of hepatocellular carcinoma (HCC). The focal adhesion kinase (FAK) gene protein tyrosine kinase 2 is amplified in 16.4% of The Cancer Genome Atlas HCC specimens, and its amplification leads to increased FAK mRNA expression. It is not known whether the overexpression of FAK alone is sufficient to induce HCC or whether it must cooperate in some ways with other oncogenes. In this study, we found that 34.8% of human HCC samples with FAK amplification also show ß-catenin mutations, suggesting a co-occurrence of FAK overexpression and ß-catenin mutations in HCC. We overexpressed FAK alone, constitutively active forms of ß-catenin (CAT) alone, or a combination of FAK and CAT in the livers of C57/BL6 mice. We found that overexpression of both FAK and CAT, but neither FAK nor CAT alone, in mouse livers was sufficient to lead to tumorigenesis. We further demonstrated that FAK's kinase activity is required for FAK/CAT-induced tumorigenesis. Furthermore, we performed RNA-sequencing analysis to identify the genes/signaling pathways regulated by FAK, CAT, or FAK/CAT. We found that FAK overexpression dramatically enhances binding of ß-catenin to the promoter of androgen receptor (AR), which leads to increased expression of AR in mouse livers. Moreover, ASC-J9, an AR degradation enhancer, suppressed FAK/CAT-induced HCC formation. Conclusion: FAK overexpression and ß-catenin mutations often co-occur in human HCC tissues. Co-overexpression of FAK and CAT leads to HCC formation in mice through increased expression of AR; this mouse model may be useful for further studies of the molecular mechanisms in the pathogenesis of HCC and could lead to the identification of therapeutic targets.


Subject(s)
Carcinoma, Hepatocellular/genetics , Focal Adhesion Kinase 1/genetics , Liver Neoplasms/genetics , beta Catenin/genetics , Animals , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Inbred C57BL , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...