Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotheranostics ; 6(3): 270-285, 2022.
Article in English | MEDLINE | ID: mdl-35223380

ABSTRACT

Gas-core nanoscale bubbles (or nanobubbles) have gained significant recent attention as promising contrast agents for cancer molecular imaging using medical ultrasound. Previous work has shown that active targeting of nanobubbles to tumor biomarkers such as the prostate-specific membrane antigen (PSMA) significantly prolongs ultrasound signal enhancement, which is a critical feature for successful tumor diagnosis. However, the specific mechanism behind this effect is not well understood, and has not been previously studied in detail. Thus, in the current work, we investigated the process of PMSA- targeted nanobubble transport in tumors across different scales from in vivo whole tumor imaging using high-frequency dynamic contrast-enhanced ultrasound to intracellular confocal imaging and, molecularly using headspace gas chromatography/mass spectrometry. Data demonstrated that, indeed, molecular targeting of nanobubbles to the PSMA biomarker prolongs their tumor uptake and retention across the entire tumor volume, but with variability due to the expected tumor heterogeneity. Importantly, in vitro, the active targeting of NBs results in internalization via receptor-mediated endocytosis into the target cells, and the co-localization with intracellular vesicles (late-stage endosomes/lysosomes) significantly prolongs perfluorocarbon gas retention within the cells. This has not been directly observed previously. These results support the potential for nanobubbles to enable highly specific, background-free diagnostic imaging of the target cells/tissues using ultrasound.


Subject(s)
Contrast Media , Prostatic Neoplasms , Animals , Cell Line, Tumor , Contrast Media/chemistry , Humans , Male , Mice , Mice, Nude , Prostatic Neoplasms/diagnostic imaging , Ultrasonography/methods
2.
Nanomedicine ; 28: 102213, 2020 08.
Article in English | MEDLINE | ID: mdl-32348874

ABSTRACT

Contrast-enhanced ultrasound with microbubbles has shown promise in detection of prostate cancer (PCa), but sensitivity and specificity remain challenging. Targeted nanoscale-contrast agents with improved capability to accumulate in tumors may result in prolonged signal enhancement and improved detection of PCa with ultrasound. Here we report nanobubbles (NB) that specifically targets prostate specific membrane antigen (PSMA) overexpressed in PCa. The PSMA-targeted-NB (PSMA-NB) were utilized to simultaneously image dual-flank PCa (PSMA-positive PC3pip and PSMA-negative PC3flu) to examine whether the biomarker can be successfully detected and imaged in a mouse model. Results demonstrate that active targeting rapidly and selectively enhances tumor accumulation and tumor retention. Importantly, these processes could be visualized and quantified, in real-time, with clinical ultrasound. Such demonstration of the immense yet underutilized potential of ultrasound in the molecular imaging area can open the door to future opportunities for improving sensitivity and specificity of cancer detection using parametric NB-enhanced ultrasound imaging.


Subject(s)
Antigens, Neoplasm/analysis , Contrast Media/chemistry , Molecular Imaging/methods , Neoplasm Proteins/analysis , Prostatic Neoplasms/diagnostic imaging , Ultrasonography/methods , Animals , Cell Line, Tumor , GPI-Linked Proteins/analysis , Male , Mice , Mice, Nude , Microbubbles
3.
Nanomedicine ; 13(1): 59-67, 2017 01.
Article in English | MEDLINE | ID: mdl-27565686

ABSTRACT

The design of nanoscale yet highly echogenic agents for imaging outside of the vasculature and for ultrasound-mediated drug delivery remains a formidable challenge. We have previously reported on formulation of echogenic perfluoropropane gas nanobubbles stabilized by a lipid-pluronic surfactant shell. In the current work we describe the development of a new generation of these nanoparticles which consist of perfluoropropane gas stabilized by a surfactant and lipid membrane and a crosslinked network of N,N-diethylacrylamide. The resulting crosslinked nanobubbles (CL-PEG-NB) were 95.2±25.2nm in diameter and showed significant improvement in stability and retention of echogenic signal over 24h. In vivo analysis via ultrasound and fluorescence mediated tomography showed greater tumor extravasation and accumulation with CL-PEG-NB compared to microbubbles. Together these results demonstrate the capabilities and advantages of a new, more stable, nanometer-scale ultrasound contrast agent that can be utilized in future work for diagnostic scans and molecular imaging.


Subject(s)
Acrylamides/chemistry , Contrast Media/chemistry , Microbubbles , Nanoparticles/chemistry , Polymers/chemistry , Animals , Cell Line, Tumor , Colorectal Neoplasms/diagnostic imaging , Drug Delivery Systems , Humans , Mice , Ultrasonography , Xenograft Model Antitumor Assays
4.
Article in English | MEDLINE | ID: mdl-25580914

ABSTRACT

Current commercially available ultrasound contrast agents are gas-filled, lipid- or protein-stabilized microbubbles larger than 1 µm in diameter. Because the signal generated by these agents is highly dependent on their size, small yet highly echogenic particles have been historically difficult to produce. This has limited the molecular imaging applications of ultrasound to the blood pool. In the area of cancer imaging, microbubble applications have been constrained to imaging molecular signatures of tumor vasculature and drug delivery enabled by ultrasound-modulated bubble destruction. Recently, with the rise of sophisticated advancements in nanomedicine, ultrasound contrast agents, which are an order of magnitude smaller (100-500 nm) than their currently utilized counterparts, have been undergoing rapid development. These agents are poised to greatly expand the capabilities of ultrasound in the field of targeted cancer detection and therapy by taking advantage of the enhanced permeability and retention phenomenon of many tumors and can extravasate beyond the leaky tumor vasculature. Agent extravasation facilitates highly sensitive detection of cell surface or microenvironment biomarkers, which could advance early cancer detection. Likewise, when combined with appropriate therapeutic agents and ultrasound-mediated deployment on demand, directly at the tumor site, these nanoparticles have been shown to contribute to improved therapeutic outcomes. Ultrasound's safety profile, broad accessibility and relatively low cost make it an ideal modality for the changing face of healthcare today. Aided by the multifaceted nano-sized contrast agents and targeted theranostic moieties described herein, ultrasound can considerably broaden its reach in future applications focused on the diagnosis and staging of cancer.


Subject(s)
Blood Vessels/anatomy & histology , Contrast Media/chemistry , Diagnostic Imaging , Ultrasonics/methods , Animals , Humans , Nanoparticles/chemistry , Neoplasms/diagnosis
5.
Pharm Res ; 31(6): 1407-17, 2014 Jun.
Article in English | MEDLINE | ID: mdl-23943542

ABSTRACT

PURPOSE: Pluronic has been shown to sensitize various tumor cell lines to chemotherapy and hyperthermia by altering the membrane fluidity, depleting ATP, and modulating the heat shock protein 70 expression. In our prior work, Pluronic was also used to formulate nanosized ultrasound contrast agents. In the current study we evaluate the use of these contrast agents as vehicles for image-guided delivery of Pluronic to improve outcomes of tumor radiofrequency (RF) ablation. METHODS: Lipid-shelled Pluronic nanobubbles were prepared and examined for size distribution, zeta potential, stability, biodistribution, accumulation of nanobubbles in the tumor, and treatment efficacy. LS174-T xenograft tumor-bearing mice were used to evaluate tumor growth suppression and measure treatment efficacy after RF ablation. RESULTS: The average diameter of Pluronic bubbles was 230 nm, and initial bubble echogenicity was 16 dB. In vitro, cells exposed to Pluronic nanobubbles exhibited low cytotoxicity in the absence of ultrasound, even if heat (43 ºC) was applied. When the cells were exposed to Pluronic nanobubbles, heat, and ultrasound; viability was significantly reduced. In vivo, tumors treated with ultrasound-modulated nanobubbles prior to RF ablation showed a significant reduction in growth compared to the RF alone (P<0.05). CONCLUSION: Lipid and Pluronic-shelled, echogenic nanobubbles combined with ultrasound modulation can serve as an effective theranostic method for sensitization of tumors to RF ablation.


Subject(s)
Catheter Ablation/methods , Contrast Media/chemistry , Nanoparticles , Neoplasms/diagnosis , Neoplasms/surgery , Ultrasonography/methods , Animals , Cell Survival/drug effects , Drug Delivery Systems , Humans , Mice , Microbubbles , Tissue Distribution , Xenograft Model Antitumor Assays
6.
Int J Radiat Biol ; 89(10): 801-12, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23631609

ABSTRACT

PURPOSE: Pluronic block copolymers are non-ionic surfactants with demonstrated sensitizing activity in chemotherapy and hyperthermia in various tumor cell lines. In the current study we investigated the potential activity of Pluronic as a radiosensitizing agent. MATERIALS AND METHODS: As a possible mechanism, the effect of Pluronic on Hsp70 and Hsp90 was examined. Gli36 human glioma cells were treated with radiation alone as well as with a combination treatment of Pluronic and radiation. RESULTS: Clonogenic cell survival assays show that Pluronic has an elevated effect on radiosensitization (50% high, p < 0.01), even with radiation doses as low as 2 Gy. The Hsp90 level was reduced 24 h after the combined treatment in both in vitro and in vivo. Similarly, Hsp70 levels were also decreased 24 h post treatment. When Gli36 cells were exposed to Pluronic before and during irradiation, DNA DSB: double-strand breaks repair was reduced, and elevated apoptosis was also seen in tumor xenografts. CONCLUSION: Data suggest the potential use of L10 as a radiosensitizer. While the mechanism of sensitization requires additional investigation, the presented results indicate that the effect may be due, in part, to a decrease in Hsp90 and 70 levels and increased DNA damage.


Subject(s)
Poloxamer/chemistry , Poloxamer/pharmacology , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Humans , Mice , Stem Cells/drug effects , Stem Cells/radiation effects , Xenograft Model Antitumor Assays
7.
Int J Hyperthermia ; 27(7): 672-81, 2011.
Article in English | MEDLINE | ID: mdl-21992560

ABSTRACT

PURPOSE: The goal of this study was to evaluate the relationship between previously demonstrated thermosensitising effects of the block copolymer, Pluronic, and heat shock protein 70 (Hsp70) expression in an experimental colorectal cancer model in vitro and in vivo. MATERIALS AND METHODS: Rat colorectal carcinoma cells were treated with low-grade hyperthermia (43°C) alone or in combination with Pluronics L10 (3 mg/mL), L61 (0.3 mg/mL), or L64 (0.5 mg/mL) for 20 min. Adinosine triphosphate (ATP) levels and cell viability were determined using standard assays. Hsp70 expression was quantified by western blot for cells treated with L10, L61, and L64 at doses specified above and Pluronic P85 (10 mg/mL) alone and in combination with heat. BDIX rats with flank tumours were used to study the effect of L61 and hyperthermia on Hsp70 expression in vivo. RESULTS: In vitro, treatment with L10, L61, and L64 plus low-grade hyperthermia lead to depletion of ATP levels to between 8 and 66% of untreated control after 24 h. Maximum expression of Hsp70 was observed at 9 h following hyperthermia alone. The combination of low-grade hyperthermia and Pluronic treatment reduced Hsp70 expression for up to 6 hours, and L10 appeared to completely inhibit the Hsp70 expression. In vivo, Hsp70 expression was increased 5 h after hyperthermia in BDIX rat tumour models and no Hsp70 expression was observed in L61 pre-treated and control groups. CONCLUSION: Pluronic effectively improves hyperthermic and low-grade hyperthermic treatment in part due to reduction of Hsp70 expression.


Subject(s)
Adenocarcinoma/metabolism , Colorectal Neoplasms/metabolism , HSP70 Heat-Shock Proteins/biosynthesis , Poloxamer/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Hyperthermia, Induced , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...