Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
2.
Nat Ecol Evol ; 8(5): 901-911, 2024 May.
Article in English | MEDLINE | ID: mdl-38467713

ABSTRACT

Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.


Subject(s)
Biodiversity , Floods , Rivers , Trees , Brazil , Forests
3.
Conserv Biol ; : e14245, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456548

ABSTRACT

Understanding which species will be extirpated in the aftermath of large-scale human disturbance is critical to mitigating biodiversity loss, particularly in hyperdiverse tropical biomes. Deforestation is the strongest driver of contemporary local extinctions in tropical forests but may occur at different tempos. The 2 most extensive tropical forest biomes in South America-the Atlantic Forest and the Amazon-have experienced historically divergent pathways of habitat loss and biodiversity decay, providing a unique case study to investigate rates of local species persistence on a single continent. We quantified medium- to large-bodied mammal species persistence across these biomes to elucidate how landscape configuration affects their persistence and associated ecological functions. We collected occurrence data for 617 assemblages of medium- to large-bodied mammal species (>1 kg) in the Atlantic Forest and the Amazon. Analyzing natural habitat cover based on satellite data (1985-2022), we employed descriptive statistics and generalized linear models (GLMs) to investigate ecospecies occurrence patterns in relation to habitat cover across the landscapes. The subregional erosion of Amazonian mammal assemblage diversity since the 1970s mirrors that observed since the colonial conquest of the Atlantic Forest, given that 52.8% of all Amazonian mammals are now on a similar trajectory. Four out of 5 large mammals in the Atlantic Forest were prone to extirpation, whereas 53% of Amazonian mammals were vulnerable to extirpation. Greater natural habitat cover increased the persistence likelihood of ecospecies in both biomes. These trends reflected a median local species loss 63.9% higher in the Atlantic Forest than in the Amazon, which appears to be moving toward a turning point of forest habitat loss and degradation. The contrasting trajectories of species persistence in the Amazon and Atlantic Forest domains underscore the importance of considering historical habitat loss pathways and regional biodiversity erosion in conservation strategies. By focusing on landscape configuration and identifying essential ecological functions associated with large vertebrate species, conservation planning and management practices can be better informed.


Uso de la pérdida histórica de hábitat para predecir la desaparición de mamíferos contemporáneos en los bosques neotropicales Resumen Tener conocimiento de cuáles especies desaparecerán después de una perturbación humana es de suma importancia para mitigar la pérdida de la biodiversidad, particularmente en los biomas híper diversos. La deforestación es la principal causante de las extinciones locales contemporáneas en los bosques tropicales, aunque puede ocurrir en diferentes tiempos. Los dos bosques tropicales más extensos de América del Sur - el Bosque Atlántico y la Amazonia - han experimentado formas históricamente divergentes de pérdida de hábitat y decadencia de biodiversidad, lo que proporciona un caso único de estudio para investigar las tasas de persistencia de las especies locales en un solo continente. Cuantificamos la persistencia de las especies de mamíferos de talla mediana a grande en estos dos bosques para aclarar cómo la configuración del paisaje afecta su persistencia y las funciones ecológicas asociadas. Recolectamos datos de presencia de 617 ensambles de especies de mamíferos de talla mediana a grande (>1 kg) en el Bosque Atlántico y en la Amazonia. Analizamos la cobertura natural del hábitat con base en datos satelitales (1985-2022) y empleamos estadística descriptiva y modelos lineales generalizados (MLG) para investigar los patrones de presencia de las eco especies en relación con la cobertura del hábitat en los distintos paisajes. La erosión subregional de la diversidad de ensambles de mamíferos en la Amazonia desde los 70s es igual a la observada en el Bosque Atlántico desde la conquista colonial, dado que 52.8% de todos los mamíferos amazónicos se encuentran en una trayectoria similar. Cuatro de los cinco grandes mamíferos en el Bosque Atlántico estaban propensos a desaparecer, mientras que el 53% de los mamíferos amazónicos estaban vulnerables a desaparecer. Una mayor cobertura natural del hábitat incrementó la probabilidad de persistencia de las eco especies en ambos bosques. Estas tendencias reflejaron una pérdida mediana de especies locales 63.9% mayor en el Bosque Atlántico que en la Amazonia, lo cual parece dirigirse hacia un momento decisivo para la degradación y pérdida del hábitat del bosque. Las trayectorias contrastantes de la persistencia de especies en el Bosque Atlántico y la Amazonia destacan la importancia de considerar dentro de las estrategias de conservación las maneras en las que se ha perdido históricamente el hábitat y la erosión de la biodiversidad regional. Si nos enfocamos en la configuración del paisaje y en la identificación de las funciones ecológicas esenciales asociadas con las especies grandes de vertebrados, podemos informar de mejor manera a la planeación de la conservación y las prácticas de manejo.

5.
Ecol Evol ; 13(12): e10772, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38077521

ABSTRACT

The fragmentation and degradation of otherwise continuous natural landscapes pose serious threats to the health of animal populations, consequently impairing their fitness and survival. While most fragmentation ecology studies focus on habitat remnants embedded withinn terrestrial matrices, the effects of true insularization remains poorly understood. Land-bridge islands created by major dams leads to habitat loss and fragmentation, negatively affecting terrestrial biodiversity. To assess the effects of insularization, we conducted a study on the key aspects of dung beetle physiological condition and body size throughout the Balbina Hydroelectric Reservoir located in the Central Amazon. We assessed these traits at the population and assemblage levels, collecting dung beetles from both forest islands and continuous forest areas while analyzing various landscape variables. We show that landscapes with higher forest cover positively affected dung beetle body size. Interestingly, dung beetle responses to insularization were species-dependent; larger islands tended to host larger individuals of Deltochilum aspericole, while in Canthon triangularis, smaller islands showed larger body sizes. However, individuals from the mainland were larger than those from the islands. Moreover, the proportion of closed-canopy forest in the landscapes also impacted physiological attributes. It negatively affected the body size of Deltochilum aspericole and the lipid mass of Dichotomius boreus, but positively affected the lipid mass of Canthon triangularis. These findings contribute to a better understanding of how habitat fragmentation in aquatic matrices affects the size structure and physiology of insect assemblages. This is essential in formulating effective conservation strategies for preserving biodiversity loss in tropical forest regions and mitigating the consequences of hydropower infrastructure.

6.
An Acad Bras Cienc ; 95(suppl 2): e20220746, 2023.
Article in English | MEDLINE | ID: mdl-38126433

ABSTRACT

Coats-of-arms representing municipal counties express local patterns of rural economics, natural resource and land use, features of the natural capital, and the cultural heritage of either aborigines or colonists. We reconstruct the subnational economic and political timeline of the world's largest tropical country using municipal coats-of-arms to reinterpret Brazil's historical ecology. We assessed all natural resource, biophysical, agricultural, and ethnocultural elements of 5,197 coats-of-arms (93.3%) distributed throughout Brazil. We extracted socioenvironmental co-variables for any municipality to understand and predict the relationships between social inequality, environmental degradation, and the historical ecology symbology. We analyzed data via ecological networks and structural equation models. Our results show that the portfolio of political-administrative symbology in coats-of-arms is an underutilized tool to understand the history of colonization frontiers. Although Brazil is arguably Earth's most species-rich country, generations of political leaders have historically failed to celebrate this biodiversity, instead prioritizing a symbology depicted by icons of frontier conquest and key natural resources. Brazilian historical ecology reflects the relentless depletion of the natural resource capital while ignoring profound social inequalities. Degradation of natural ecosystems is widespread in Brazilian economy, reflecting a legacy of boom-and-bust rural development that so far has failed to deliver sustainable socioeconomic prosperity.


Subject(s)
Conservation of Natural Resources , Ecosystem , Humans , Conservation of Natural Resources/methods , Socioeconomic Factors , Brazil , Rural Population , Agriculture
7.
Ecol Evol ; 13(10): e10624, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37869432

ABSTRACT

Agricultural commodity production is one the main drivers of deforestation in Legal Brazilian Amazonia resulting in a deforested and/or fragmented landscape formed by forest remnants of different sizes and shape embedded within the agricultural matrix. As an ecosystem engineer and a crucial seed predator, white-lipped peccaries (Tayassu pecari) play a pivotal role in forest structure, biodiversity, and nutrient cycling. However, they are highly sensitive to habitat fragmentation and hunting pressure. White-lipped peccaries are, therefore, a wide-ranging "landscape species," the spatial and ecological requirements of which can be used to guide conservation planning in human-modified landscapes. Using data from GPS-tracked individuals in large-scale mechanized agriculture landscapes in the state of Mato Grosso, Brazil's largest soybean and maize producer, we investiated the home range size and resource selection during both the crop and non-crop season. We observed a seasonal variation in home range size and an increased selection for croplands during the crop season. White-lipped peccaries favored native vegetation patches and also exhibited avoidance of locations distant from perennial water bodies and distant cropland locations far from forest remmants. This study can contribute to inform effective conservation strategies and land management practices aimed at preserving suitable habitats and promoting wildlife coexistence with working agricultural landscapes.

8.
Biol Rev Camb Philos Soc ; 98(5): 1829-1844, 2023 10.
Article in English | MEDLINE | ID: mdl-37311559

ABSTRACT

In many disturbed terrestrial landscapes, a subset of native generalist vertebrates thrives. The population trends of these disturbance-tolerant species may be driven by multiple factors, including habitat preferences, foraging opportunities (including crop raiding or human refuse), lower mortality when their predators are persecuted (the 'human shield' effect) and reduced competition due to declines of disturbance-sensitive species. A pronounced elevation in the abundance of disturbance-tolerant wildlife can drive numerous cascading impacts on food webs, biodiversity, vegetation structure and people in coupled human-natural systems. There is also concern for increased risk of zoonotic disease transfer to humans and domestic animals from wildlife species with high pathogen loads as their abundance and proximity to humans increases. Here we use field data from 58 landscapes to document a supra-regional phenomenon of the hyperabundance and community dominance of Southeast Asian wild pigs and macaques. These two groups were chosen as prime candidates capable of reaching hyperabundance as they are edge adapted, with gregarious social structure, omnivorous diets, rapid reproduction and high tolerance to human proximity. Compared to intact interior forests, population densities in degraded forests were 148% and 87% higher for wild boar and macaques, respectively. In landscapes with >60% oil palm coverage, wild boar and pig-tailed macaque estimated abundances were 337% and 447% higher than landscapes with <1% oil palm coverage, respectively, suggesting marked demographic benefits accrued by crop raiding on calorie-rich food subsidies. There was extreme community dominance in forest landscapes with >20% oil palm cover where two pig and two macaque species accounted for >80% of independent camera trap detections, leaving <20% for the other 85 mammal species >1 kg considered. Establishing the population trends of pigs and macaques is imperative since they are linked to cascading impacts on the fauna and flora of local forest ecosystems, disease and human health, and economics (i.e., crop losses). The severity of potential negative cascading effects may motivate control efforts to achieve ecosystem integrity, human health and conservation objectives. Our review concludes that the rise of native generalists can be mediated by specific types of degradation, which influences the ecology and conservation of natural areas, creating both positive and detrimental impacts on intact ecosystems and human society.


Subject(s)
Conservation of Natural Resources , Ecosystem , Animals , Humans , Swine , Forests , Biodiversity , Animals, Wild , Sus scrofa
9.
Ecol Evol ; 13(4): e9975, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37038515

ABSTRACT

Species relative abundance (SRA) is an essential attribute of biotic communities, which can provide an accurate description of community structure. However, the sampling method used may have a direct influence on SRA quantification, since the use of attractants (e.g., baits, light, and pheromones) can introduce additional sources of variation in trap performance. We tested how sampling aided by baits affect community data and therefore alter derived metrics. We tested our hypothesis on dung beetles using data from flight interception traps (FITs) as a baseline to evaluate baited pitfall trap performance. Our objective was to assess the effect of bait attractiveness on estimates of SRA and assemblage metrics when sampled by pitfall traps baited with human feces.Dung beetles were sampled at three terra firme primary forest sites in the Brazilian Amazon. To achieve our objective, we (i) identified species with variable levels of attraction to pitfall baited with human feces; (ii) assessed differences in SRA; and (iii) assessed the effect of bait on the most commonly used diversity metrics derived from relative abundance (Shannon and Simpson indices). We identified species less and highly attracted to the baits used, because most attracted species showed greater relative abundances within baited pitfall traps samples compared with our baseline. Assemblages sampled by baited pitfall traps tend to show lower diversity and higher dominance than those sampled by unbaited FITs. Our findings suggest that for ecological questions focused on species relative abundance, baited pitfall traps may lead to inaccurate conclusions regarding assemblage structure. Although tested on dung beetles, we suggest that the same effect could be observed for other insect taxa that are also sampled with baited traps. We highlight a need for further studies on other groups to elucidate any potential effects of using baits.

10.
Sci Rep ; 13(1): 4464, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36932174

ABSTRACT

Apex predators typically affect the distribution of key soil and vegetation nutrients through the heterogeneous deposition of prey carcasses and excreta, leading to a nutrient concentration in a hotspot. The exact role of central-place foragers, such as tropical raptors, in nutrient deposition and cycling, is not yet known. We investigated whether harpy eagles (Harpia harpyja) in Amazonian Forests-a typically low soil fertility ecosystem-affect soil nutrient profiles and the phytochemistry around their nest-trees through cumulative deposition of prey carcasses and excreta. Nest-trees occurred at densities of 1.5-5.0/100 km2, and each nest received ~ 102.3 kg of undressed carcasses each year. Effects of nests were surprisingly negative over local soil nutrient profiles, with soils underneath nest-trees showing reductions in nutrients compared with controls. Conversely, canopy tree leaves around nests showed significant 99%, 154% and 50% increases in nitrogen, phosphorus and potassium, respectively. Harpy eagles have experienced a 41% decline in their range, and many raptor species are becoming locally extirpated. These are general examples of disruption in biogeochemical cycles and nutrient heterogeneity caused by population declines in a central-place apex predator. This form of carrion deposition is by no means an exception since several large raptors have similar habits.


Subject(s)
Ecosystem , Forests , Trees , Soil , Nitrogen , Tropical Climate
12.
Commun Biol ; 6(1): 132, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36792802

ABSTRACT

Jaguars (Panthera onca) exert critical top-down control over large vertebrates across the Neotropics. Yet, this iconic species have been declining due to multiple threats, such as habitat loss and hunting, which are rapidly increasing across the New World tropics. Based on geospatial layers, we extracted socio-environmental variables for 447 protected areas across the Brazilian Amazon to identify those that merit short-term high-priority efforts to maximize jaguar persistence. Data were analyzed using descriptive statistics and comparisons of measures of central tendency. Our results reveal that areas containing the largest jaguar densities and the largest estimated population sizes are precisely among those confronting most anthropogenic threats. Jaguars are threatened in the world's largest tropical forest biome by deforestation associated with anthropogenic fires, and the subsequent establishment of pastures. By contrasting the highest threats with the highest jaguar population sizes in a bivariate plot, we provide a shortlist of the top-10 protected areas that should be prioritized for immediate jaguar conservation efforts and 74 for short-term action. Many of these are located at the deforestation frontier or in important boundaries with neighboring countries (e.g., Peruvian, Colombian and Venezuelan Amazon). The predicament of a safe future for jaguars can only be ensured if protected areas persist and resist downgrading and downsizing due to both external anthropogenic threats and geopolitical pressures (e.g., infrastructure development and frail law enforcement).


Subject(s)
Conservation of Natural Resources , Panthera , Animals , Conservation of Natural Resources/methods , Brazil , Ecosystem , Population Density
13.
Trends Ecol Evol ; 38(2): 113-116, 2023 02.
Article in English | MEDLINE | ID: mdl-36528414

ABSTRACT

Wholesale conversion of natural Amazonian ecosystems has been encouraged by Brazil's extreme antienvironmental government, and historical forest loss explains municipal-scale voting prevalence. Embracing a new administration would strengthen local-to-regional governance, suppress illegal land grabbing, deforestation, logging, and gold mining, thereby protecting the world's most species-rich forest domain and ensuring global sustainability.


Subject(s)
Ecosystem , Environmental Policy , Brazil , Conservation of Natural Resources , Forests
14.
Curr Biol ; 33(2): 389-396.e3, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36580916

ABSTRACT

The conversion of natural ecosystems into human-modified landscapes (HMLs) is the main driver of biodiversity loss in terrestrial ecosystems.1,2,3 Even when species persist within habitat remnants, populations may become so small that ecological interactions are functionally lost, disrupting local interaction networks.4,5 To uncover the consequences of land use changes toward ecosystem functioning, we need to understand how changes in species richness and abundance in HMLs6,7,8 rearrange ecological networks. We used data from forest vertebrate surveys and combined modeling and network analysis to investigate how the structure of predator-prey networks was affected by habitat insularization induced by a hydroelectric reservoir in the Brazilian Amazonia.9 We found that network complexity, measured by interaction diversity, decayed non-linearly with decreasingly smaller forest area. Although on large forest islands (>100 ha) prey species were linked to 3-4 potential predators, they were linked to one or had no remaining predator on small islands. Using extinction simulations, we show that the variation in network structure cannot be explained by abundance-related extinction risk or prey availability. Our findings show that habitat loss may result in an abrupt disruption of terrestrial predator-prey networks, generating low-complexity ecosystems that may not retain functionality. Release from predation on some small islands may produce cascading effects over plants that accelerate forest degradation, whereas predator spillover on others may result in overexploited prey populations. Our analyses highlight that in addition to maintaining diversity, protecting large continuous forests is required for the persistence of interaction networks and related ecosystem functions.


Subject(s)
Ecosystem , Food Chain , Animals , Humans , Forests , Biodiversity , Vertebrates
15.
Biota Neotrop. (Online, Ed. ingl.) ; 23(4): e20231551, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1527946

ABSTRACT

Abstract The Brazilian state of Acre is located in the southwestern Amazon and it is characterized by a humid tropical forest vegetation that covers plains and mountains. Up to this point, the composition of termite species in the state is not known. The aim of this study was to provide a checklist of termite species or recognizable taxonomic units for the state of Acre. Sampling was conducted through field expeditions at the Serra do Divisor National Park, Chandless State Park, Humaitá Forest Reserve, and Chico Mendes Environmental Park using a standardized rapid termite inventory protocol in the first two areas and active searching collections in the others, without a specific protocol. This study also included occurrence records published in the scientific literature. A total of 128 species and morphospecies of termites were found in Acre, distributed across 59 genera and four families. The most frequently occurring species in Acre was Heterotermes tenuis (Hagen, 1858). The study also identified six new species records for Brazil. The predominant feeding groups were soil-feeders and wood-feeders, as expected from data obtained from surveys in humid tropical forests. Despite the significant number of new records for Acre (112), it is concluded that a larger sampling effort is still required, as many areas of the state have not yet been studied for termites.


Resumen O estado brasileiro do Acre está localizado no sudoeste da Amazônia e é caracterizado por uma vegetação de floresta tropical úmida que cobre planícies e montanhas. Até então, a composição de espécies de térmitas no estado não é conhecida. O objetivo desse estudo foi construir um checklist de espécies ou unidades taxonômicas reconhecíveis de térmitas para o estado do Acre. A amostragem foi conduzida através de expedições de campo no Parque Nacional da Serra do Divisor, no Parque Estadual Chandless, na Reserva Florestal Humaitá, e no Parque Ambiental Chico Mendes utilizando o protocolo rápido de diversidade de térmitas nas duas primeiras áreas e coletas avulsas nas demais, sem um protocolo específico. Este estudo também incluiu registros de ocorrência publicados na literature científica. Um total de 128 espécies e morfoespécies de térmitas foram encontradas no Acre, distribuídas em 59 gêneros e quatro famílias. A espécie de ocorrência mais frequente no Acre foi Heterotermes tenuis (Hagen, 1858). O estudo também identificou seis novos registros de espécies para o Brasil. Os grupos alimentares predominantes foram os humívoros e xilófagos, como esperado a partir de dados obtidos de pesquisas em florestas tropicais úmidas. Apesar do número significativo de novos registros para o Acre (112), conclui-se que ainda é necessário um esforço amostral maior, uma vez que muitas áreas do estado ainda não foram estudadas para térmitas.

16.
Am J Primatol ; 84(12): e23446, 2022 12.
Article in English | MEDLINE | ID: mdl-36268580

ABSTRACT

Although the species-area relationship is well known, it may interact with and be augmented or cancelled out by other factors, such as local human disturbance. We used data on site occupancy of the Endangered blonde capuchin monkey (Sapajus flavius) based primarily on a standardized program of local interviews to model the influence of past human disturbance on the occurrence of this species across remaining forest patches of northeastern Brazil within the Atlantic Forest and Caatinga biomes. To do so, we assessed environmental covariates that best represent the history of human impacts. We then used single-species occupancy models to assess site occupancy, while controlling for detection error during sampling. Surprisingly, we obtained a higher occupancy rate in the more arid Caatinga remnants than in the more mesic Atlantic Forest. Habitat patch size, history of site protection, and annual precipitation were the best predictors of local occupancy. Historical human disturbance, including subsistence hunting, has exerted considerable impact on the modern distribution of the blonde capuchin, whose geographic range largely spans a region historically lacking any wildlife protection. Matrix vegetation structure across the Caatinga, which so far has averted large-scale mechanized agriculture, also creates a benign landscape that likely benefits contemporary capuchin occupancy. Local extinctions of this endangered primate will most likely continue unabated unless a ban on hunting in remaining Atlantic Forest and Caatinga fragments can be enforced.


Subject(s)
Ecosystem , Forests , Humans , Animals , Cebus , Brazil
17.
Sci Adv ; 8(34): eabm0397, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36026453

ABSTRACT

Deforestation and fragmentation are pervasive drivers of biodiversity loss, but how they scale up to entire landscapes remains poorly understood. Here, we apply species-habitat networks based on species co-occurrences to test the effects of insular fragmentation on multiple taxa-medium-large mammals, small nonvolant mammals, lizards, understory birds, frogs, dung beetles, orchid bees, and trees-across 22 forest islands and three continuous forest sites within a river-damming quasi-experimental landscape in Central Amazonia. Widespread, nonrandom local species extinctions were translated into highly nested networks of low connectance and modularity. Networks' robustness considering the sequential removal of large-to-small sites was generally low; between 5% (dung beetles) and 50% (orchid bees) of species persisted when retaining only <10 ha of islands. In turn, larger sites and body size were the main attributes structuring the networks. Our results raise the prospects that insular forest fragmentation results in simplified species-habitat networks, with distinct taxa persistence to habitat loss.

18.
Curr Biol ; 32(13): 2997-3004.e2, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35709755

ABSTRACT

As tropical forests are becoming increasingly fragmented, understanding the magnitude and time frame of biodiversity declines is vital for 21st century sustainability goals. Over three decades, we monitored post-isolation changes in small mammal species richness and abundance within a forest landscape fragmented by the construction of a dam in Thailand.1,2 We observed the near-complete collapse of species richness within 33 years, with no evidence of a recolonization effect across repeatedly sampled islands. Our results further revealed a decline in species richness as island size decreased and isolation time increased, accelerated by the increasing dominance of the ubiquitous Malayan field rat, Rattus tiomanicus. This species was already hyper-abundant on smaller islands in the initial surveys (1992-1994, 66% of individuals) but became monodominant on all islands, regardless of island size, by the most recent survey (2020, 97%). Our results suggest that insular forest fragments are highly susceptible to rapid species loss, particularly due to the competitive nature of Rattus accelerating the rate at which extinction debts are paid. To mitigate these impacts, reducing the extent of habitat degradation, as triggered by fragmentation and exacerbated by isolation time, can help to sustain native biodiversity while averting Rattus hyper-abundance.


Subject(s)
Conservation of Natural Resources , Forests , Animals , Biodiversity , Ecosystem , Mammals , Rats
19.
J Environ Manage ; 314: 115094, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35468435

ABSTRACT

Selective logging is pervasive across the tropics and unsustainable logging depletes forest biodiversity and carbon stocks. Improving the sustainability of logging will be crucial for meeting climate targets. Carbon-based payment for ecosystem service schemes, including REDD+, give economic value to standing forests and can protect them from degradation, but only if the revenue from carbon payments is greater than the opportunity cost of forgone or reduced logging. We currently lack understanding of whether carbon payments are feasible for protecting Amazonian forests from logging, despite the Amazon holding the largest unexploited timber reserves and an expanding logging sector. Using financial data and inventories of >660,000 trees covering 52,000 ha of Brazilian forest concessions, we estimate the carbon price required to protect forests from logging. We estimate that a carbon price of $7.90 per tCO2 is sufficient to match the opportunity costs of all logging and fund protection of primary forest. Alternatively, improving the sustainability of logging operations by ensuring a greater proportion of trees are left uncut requires only slightly higher investments of $7.97-10.45 per tCO2. These prices fall well below the current compliance market rate and demonstrate a cost-effective opportunity to safeguard large tracts of the Amazon rainforest from further degradation.


Subject(s)
Carbon , Forestry , Conservation of Natural Resources , Ecosystem , Forests , Trees , Tropical Climate
20.
Sci Rep ; 12(1): 1797, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35110574

ABSTRACT

Tropical forests are being heavily modified by varying intensities of land use ranging from structural degradation to complete conversion. While ecological responses of vertebrate assemblages to habitat modification are variable, such understanding is critical to appropriate conservation planning of anthropogenic landscapes. We assessed the responses of medium/large-bodied mammal assemblages to the ecological impacts of reduced impact logging, secondary regrowth, and eucalyptus and oil palm plantations in Eastern Brazilian Amazonia. We used within-landscape paired baseline-treatment comparisons to examine the impact of different types of habitat modification in relation to adjacent primary forest. We examined assemblage-wide metrics including the total number of species, number of primary forest species retained in modified habitats, abundance, species composition, and community integrity. We ranked all types of habitat modification along a gradient of assemblage-wide impact intensity, with oil palm and eucalyptus plantations exerting the greatest impact, followed by secondary regrowth, and selectively logging. Selectively-logged and secondary forests did not experience discernible biodiversity loss, except for the total number of primary forest species retained. Secondary forests further experienced pronounced species turnover, with loss of community integrity. Considering the biodiversity retention capacity of anthropogenic habitats, this study reinforces the landscape-scale importance of setting aside large preserved areas.


Subject(s)
Adaptation, Physiological , Arecaceae/growth & development , Conservation of Natural Resources , Ecosystem , Eucalyptus/growth & development , Forestry , Rainforest , Trees/growth & development , Biodiversity , Environmental Monitoring , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...