Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
2.
Plant Dis ; 102(11): 2142-2148, 2018 11.
Article in English | MEDLINE | ID: mdl-30169135

ABSTRACT

Incidence of blossom blight and Botrytis fruit rot (BFR), caused by Botrytis cinerea, on two southern highbush blueberry cultivars was evaluated in several blueberry fields grown in the vicinity (BB-Str(+)) or not (BB-Str(-)) of strawberry fields in central Florida. Blossom blight and BFR incidence were higher in BB-Str(+) fields in 2014 and significantly higher in 2015 compared to BB-Str(-) fields. In total, 613 B. cinerea isolates (i.e., 181 and 432 isolates from BB-Str(-) and BB-Str(+) fields, respectively) were collected. The isolates were evaluated for sensitivity to eight single-site and one multisite fungicides using a spore germination and a germ tube elongation assay. Overall, 5, 15, 24, 28, 54, and 93% of isolates collected from BB-Str(-) were resistant to penthiopyrad, cyprodinil, boscalid, fenhexamid, pyraclostrobin, and thiophanate-methyl, respectively. Respective resistance frequencies in BB-Str(+) isolates were 10, 30, 65, 66, 89, and 99%. Resistance frequencies for all fungicides were always higher in BB-Str(+) fields compared to BB-Str(-) fields. Isolates exhibiting resistance to six or five fungicides simultaneously were predominant (50 to 70%) in blueberry fields regardless if they were grown in the vicinity of strawberry fields or not. Among 308 and 305 B. cinerea isolates tested in 2014 and 2015, 41.8 and 47.1%, respectively, showed reduced sensitivity to the multisite fungicide captan. The lower label rate of captan applied preventively did not control isolates with reduced sensitivity on detached blueberry fruit. These findings suggest a potential population flow between strawberry and blueberry fields that may impact blossom blight and gray mold development in blueberry fields. The relatively lower fungicide input applied to blueberry fields compared with strawberry fields seems to be sufficient to select for resistance and multiple-resistant phenotypes in B. cinerea populations in blueberry.


Subject(s)
Blueberry Plants/microbiology , Botrytis/drug effects , Drug Resistance, Fungal/drug effects , Fragaria/microbiology , Fungicides, Industrial/pharmacology , Plant Diseases/microbiology , Amides/pharmacology , Biphenyl Compounds/pharmacology , Captan/pharmacology , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Phenotype , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Strobilurins/pharmacology , Thiophanate/pharmacology , Thiophenes/pharmacology
3.
Plant Dis ; 100(9): 1804-1812, 2016 Sep.
Article in English | MEDLINE | ID: mdl-30682979

ABSTRACT

Colletotrichum acutatum, one of the most economically damaging pathogens of strawberry, is the primary causal agent of anthracnose fruit rot (AFR). A key challenge in managing AFR is detecting the pathogen on asymptomatic plants. To meet this need, a loop-mediated isothermal amplification (LAMP) assay was developed that incorporated two sets of primers: LITSG1, targeted on the intergenic transcribed spacer (ITS) region of ribosomal DNA, and Ltub2, on the ß-tubulin 2 gene. In pure culture assays, Ltub2 was specific for detection of C. acutatum, whereas LITSG1 detected C. acutatum and two additional anthracnose pathogens, C. gloeosporioides and C. fragariae. LITSG1 had 10-fold lower detection threshold (20 pg of mycelial DNA) than Ltub2 (200 pg mycelial DNA) in detection of C. acutatum from pure culture. For detection on asymptomatic leaves, two protocols for dislodging C. acutatum for DNA extraction were compared: i) the sonicate-agitate (SA) method and ii) the freeze-incubate-sonicate-agitate (FISA) method, which initially freezes tissues, followed by 2 days of incubation at 26°C in darkness, and then, sonication and agitation. Both methods were used for greenhouse-grown plant leaves that had been spray inoculated with serial dilutions ranging from 1.5 × 106 to 1.5 conidia ml-1. The FISA method produced more repeatable results than the SA method. For the FISA method, detection limits (expressed as initial inoculum concentrations) using LITSG1 and Ltub2 were 1.5 × 101 and 1.5 × 102 conidia ml-1, respectively. For composite samples comprised of inoculated (1.5 × 106 conidia ml-1) and noninoculated leaves of greenhouse-grown strawberry, the two sets of LAMP primers were compared using the SA method. Primer set LITSG1 consistently detected the pathogen from a single inoculated leaf in bulk samples of 50 or fewer pathogen-free leaves, whereas Ltub2 consistently detected one inoculated leaf in 20 or fewer pathogen-free leaves. Using primer set LITSG1, FISA was more sensitive than SA for detecting C. acutatum on leaves of field-grown plants from Florida. In an Iowa field trial using the FISA method, both primer sets detected C. acutatum in samples of asymptomatic leaves 6 days before fruit symptoms appeared. The results indicate that the LAMP assay has potential to provide a simplified method for detection of C. acutatum on asymptomatic strawberry plants.

4.
Phytopathology ; 104(1): 67-74, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23981282

ABSTRACT

Anthracnose crown rot is an important disease of strawberry primarily caused by Colletotrichum gloeosporioides in Florida and North Carolina. Information on the magnitude of additive and nonadditive genetic variation is required to define breeding strategies and to estimate potential genetic gains. However, little is known about the genetic control of resistance and its utility in breeding. Our objectives were to obtain estimates of heritabilities and of components of genetic variances, genotype-environment interactions, and gains for resistance, and to examine the effects of locations and transplant types on the estimates. An incomplete diallel mating design generated 42 full-sib families, which were propagated in plugs from seed (seedling tests) and as bare-root runner plants (clonal tests) of different genotypes of the same families. Both seedlings and clones were inoculated with C. gloeosporioides under field conditions in North Carolina and Florida during the 2010-11 season. Narrow-sense heritability (h(2)) and broad-sense heritability (H(2)) for both clones and seedlings were higher at the North Carolina location (h(2) = 0.34 to 0.62 and H(2) = 0.46 to 0.85) than at the Florida location (h(2) = 0.16 to 0.22 and H(2) = 0.37 to 0.46). Likewise, the seedling tests showed higher genetic control than the clonal tests at both locations. Estimates of dominance variance were approximately one-third of the additive variance at North Carolina and were even larger at Florida. Epistasis was negative at both locations and assumed zero for heritability (H(2)) calculations. Genotype-environment interactions were different by transplant type, suggesting rank changes across locations. 'Pelican' was the most resistant parent at both locations, followed by 'NCH09-68' at the NC location and 'Winter Dawn' at the Florida location. Selection and deployment of the most resistant clone within each of the five best families is estimated to produce average genetic gains of 53.0 and 73.7% at the North Carolina and Florida locations, respectively.


Subject(s)
Colletotrichum/physiology , Disease Resistance , Fragaria/genetics , Genetic Variation , Models, Statistical , Plant Diseases/immunology , Breeding , Environment , Florida , Fragaria/immunology , Fragaria/microbiology , Gene-Environment Interaction , Genotype , North Carolina , Phenotype , Plant Diseases/microbiology , Plant Diseases/statistics & numerical data , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/microbiology , Seedlings/genetics , Seedlings/immunology , Seedlings/microbiology
5.
Plant Dis ; 98(6): 851, 2014 Jun.
Article in English | MEDLINE | ID: mdl-30708681

ABSTRACT

Botryotinia fuckeliana de Bary (anamorph Botrytis cinerea Pers.) is an ubiquitous plant pathogen causing gray mold disease on more than 200 crops grown in the field or in greenhouses. Eucalyptus seedlings originating from three different greenhouses showing stem lesions were submitted to the Gulf Coast Research and Education Center Disease Clinic in June 2012. Ten single spore isolates of B. cinerea were obtained and tested for sensitivity using spore germination and germ tube elongation assays described previously (4). Fungicides tested were pyraclostrobin at 100 µg/ml (Cabrio, BASF, Research Triangle Park, NC), thiophanate-methyl at 100 µg/ml (Topsin-M, UPI, King of Prussia, PA), fenhexamid at 1 and 50 µg/ml (Elevate, Arysta Life Sciences, Cary, NC), fludioxonil at 0.1 and 10 µg/ml (Medallion, Syngenta Crop Protection, Research Triangle Park, NC), and iprodione at 5 and 50 µg/ml (Rovral, Bayer CropScience, Greensboro, NC) on 1% malt extract agar (MEA, 10 g malt extract and 15 g agar), and to cyprodinil at 1 and 25 µg/ml (Vanguard, Syngenta Crop Protection) on 0.5% sucrose agar (4). Sensitivity to the succinate dehydrogenase inhibitors (SDHIs) boscalid at 5 µg/ml (Endura, BASF), penthiopyrad at 1 and 3 µg/ml (Fontelis, DuPont Crop Protection, Willington, DE), and fluopyram at 3 µg/ml (Luna Privilege, Bayer CropScience) was evaluated on yeast bacto acetate agar (YBA) (3). The discriminatory dose for boscalid was adapted from (2) whereas those used for penthiopyrad and fluopyram were developed in this study. Isolates were grown on malt yeast extract agar for 7 to 10 days and spore suspensions were prepared in sterile distilled water and diluted to 106 conidia/ml. Respective media in 9-cm petri dishes were seeded with 7-µl droplets from each isolate allowing testing for all isolates on one plate. Two plates were used for each fungicide and sensitivity tests were repeated twice. Germination and germ tube growth were assessed microscopically after 16 to 24 h incubation at 22°C. The frequency of isolates resistant to two, three, and four fungicides was 90, 60, and 10%, respectively. Nine isolates (90%) were resistant to thiophanate-methyl and pyraclostrobin, simultaneously, whereas six (60%) and two isolates (20%) were resistant to boscalid and fenhexamid, respectively. All boscalid-resistant isolates were also resistant to pyraclostrobin and thiophanate-methyl, but one fenhexamid-resistant isolate was sensitive to the other three fungicides. Eight isolates that germinated at 5 µg/ml iprodione but not at 50 µg/ml were considered sensitive. All isolates were sensitive to the SDHIs penthiopyrad and fluopyram as well as to cyprodinil and fludioxonil. To our knowledge, this is the first report of resistance to pyraclostrobin, thiophanate-methyl, fenhexamid, and boscalid in B. cinerea from eucalyptus seedlings in Florida. The absence of resistance to fludioxonil and iprodione is likely because these fungicides are not registered in nurseries as well as fluopyram and penthiopyrad which were developed only recently. Management practices should be developed to limit the selection and spread of additional resistant populations in eucalyptus nurseries as has occurred in Florida strawberries where multi-fungicide resistance is widespread (1). References: (1) A. Amiri et al. Plant Dis. 97:393, 2013. (2) M. Leroch et al. Appl. Environ. Microbiol. 79:159, 2013. (3) G. Stammler and J. Speakman. J. Phytopathol. 154:508, 2006. (4) R. W. S. Weber and M. Hahn. J. Plant Dis. Prot. 118:17, 2011.

6.
Plant Dis ; 97(3): 393-401, 2013 Mar.
Article in English | MEDLINE | ID: mdl-30722364

ABSTRACT

Chemical control has always been essential for the management of gray mold, caused by Botrytis cinerea, to ensure sustainable strawberry production. However, lack of knowledge about actual resistance development may have disastrous consequences and lead to severe epidemics such as the one that affected several strawberry fields in 2012 in Florida. In this study, we tested 392 isolates collected from Florida strawberry fields between 2010 and 2012 for their sensitivity to boscalid (Bosc), a succinate dehydrogenase inhibitor (SdhI); pyraclostrobin, a quinone outside inhibitor (QoI); boscalid + pyraclostrobin (Pristine); fenhexamid, a hydroxyanilide (Hyd); pyrimethanil and cyprodinil, anilinopyrimidines; fludioxonil, a phenylpyrrole; and fludioxonil + cyprodinil (Switch). The respective resistance frequencies for boscalid, pyraclostrobin, Pristine, fenhexamid, cyprodinil, and pyrimethanil were 85.4, 86.5, 86.0, 44.4, 52.7, and 59.5%. Overall, 17.8 and 19.8% of isolates showed reduced sensitivity to fludioxonil and Switch, respectively. All fungicides sprayed preventively on detached strawberry fruit failed to control isolates with high levels of resistance to each fungicide except for fludioxonil and Switch. Four phenotypes with multifungicide resistance (MFR) were detected in B. cinerea populations from Florida. Isolates resistant to one fungicide (FR1), two (MFR2), three (MFR3), and four (MFR4) fungicides from different chemical groups represented 5.9, 28.6, 41.8, and 23.7% of the total resistant population, respectively. The MFR3 isolates were predominant and contained two subpopulations, the Bosc-QoI-APR isolates (56.5%) and the Bosc-QoI-HydR isolates (40.6%). In addition to reporting on very highly resistant populations to boscalid and QoI fungicides, we show evidence for a widespread multifungicide resistance to B. cinerea that warrants immediate implementation of novel management strategies to impede the development of more resistant populations.

7.
Plant Dis ; 97(5): 687, 2013 May.
Article in English | MEDLINE | ID: mdl-30722184

ABSTRACT

Impatiens, Impatiens walleriana Hook.f., are grown as an ornamental crop in greenhouse and shade house production in Florida and other regions of the United States. Downy mildew on impatiens was detected from numerous landscapes (Manatee, Hillsborough, Collier, Hendry, Broward, Palm Beach, and Miami-Dade counties) in the winter of 2012. Incidence reached nearly 100% on many affected landscape plantings. Symptoms initially appeared as yellowing on the lower leaves and were typically vein-delineated, although in some cases the entire leaf was affected. Diseased plants later wilted and infected leaves abscised from the stem. A white, downy growth was apparent on the abaxial leaf surface. Microscopic observation revealed coenocytic mycelium with sporangiophores that were hyaline, thin-walled, and had slightly swollen bases. Branches of sporangiophores were monopodial and formed right angles to the supporting branches. Sporangia were hyaline and obvoid with a single pore on the distal ends that was mostly flat. Sporangia measured 19 to 22.5 × 13 to 17 µm. Oospores were observed in stem and leaf tissue. Leaves of 10 potted impatiens plants, I. walleriana 'Super Elfin XP Coral' and 'Super Elfin XP White,' were inoculated with a suspension containing 1 × 105 sporangia/ml and sprayed till runoff (approximately 20 ml per plant) with a handheld pressurized Ulva sprayer. Plants were maintained outside in a shade house under 73% shade where the daytime temperatures averaged 24°C and RH averaged 74% and nighttime temperature averaged 18°C with an average of 91% RH. Ten non-inoculated impatiens plants served as controls. After 10 days, symptoms typical of downy mildew occurred on 100% of the inoculated impatiens plants and sporulation was confirmed microscopically. The non-inoculated control plants remained healthy. The 5' end of the large ribosomal subunit gene (762 bp) from two isolates, one collected in Hillsborough County and one from Miami-Dade County, was amplified by PCR (primers NL1-GCATATCAATAAGCGGAGGAAAAG and NL4-GGTCCGTGTTTCAAGACGG) and sequenced bi-directionally (1,2,3). The consensus sequence from both isolates was identical and it was deposited into GenBank (Accession No. JX217746). Sequence data matched (99% homology) with Plasmopara obducens reported on I. walleriana in Europe and Australia (1,2). To our knowledge, this is the first report of downy mildew on I. walleriana in Florida (4). The disease has made a major impact on impatiens in landscapes throughout Florida and will likely continue to affect future production. References: (1) A. Bulajic et. al. Plant Dis. 95:491, 2011. (2) J. H. Cunnington et. al. Plant Pathol. 57:371, 2008. (3) K. O'Donnell. Curr. Genet. 22:213, 1992. (4) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, 1989.

8.
Plant Dis ; 96(8): 1225, 2012 Aug.
Article in English | MEDLINE | ID: mdl-30727070

ABSTRACT

In March 2010, citrus black spot symptoms were observed on sweet orange trees in a grove near Immokalee, FL. Symptoms observed on fruit included hard spot, cracked spot, and early virulent spot. Hard spot lesions were up to 5 mm, depressed with a chocolate margin and a necrotic, tan center, often with black pycnidia (140 to 200 µm) present. Cracked spot lesions were large (15 mm), dark brown, with diffuse margins and raised cracks. In some cases, hard spots formed in the center of lesions. Early virulent spot lesions were small (up to 7 mm long), bright red, irregular, indented, and often with many pycnidia. In addition, small (2 to 3 mm), elliptical, reddish brown leaf lesions with depressed tan centers were observed on some trees with symptomatic fruit. Chlorotic halos appeared as they aged. Most leaves had single lesions, occasionally up to four per leaf. Tissue pieces from hard spots and early virulent spots were placed aseptically on potato dextrose agar (PDA), oatmeal agar, or carrot agar and incubated with 12 h of light and dark at 24°C. Cultures that grew colonies within a week were discarded. Fourteen single-spore cultures were obtained from the isolates that grew slower than the Guignardia mangiferae reference cultures, although pycnidia formed more rapidly in the G. mangiferae cultures (1). No sexual structures were observed. Cultures on half-PDA were black and cordlike with irregular margins with numerous pycnidia, often bearing white cirrhi after 14 days. Conidia (7.1 to 7.8 × 10.3 to 11.8 µm) were hyaline, aseptate, multiguttulate, ovoid with a flattened base surrounded by a hyaline matrix (0.4 to 0.6 µm) and a hyaline appendage on the rounded apex, corresponding to published descriptions of G. citricarpa (anomorph Phyllosticta citricarpa) (1). A yellow pigment was seen in oatmeal agar surrounding G. citricarpa, but not G. mangiferae colonies as previously reported (1,2). DNA was extracted from lesions and cultures and amplified with species-specific primers (2). DNA was also extracted from G. mangiferae and healthy citrus fruit. The G. citricarpa-specific primers produced a 300-bp band from fruit lesions and pure cultures. G. mangiferae-specific primers produced 290-bp bands with DNA from G. mangiferae cultures. The internally transcribed spacer (ITS) of the rRNA gene, translation-elongation factor (TEF), and actin gene regions were sequenced from G. citricarpa isolates and deposited in GenBank. These sequences had 100% homology with G. citricarpa ITS sequences from South Africa and Brazil, 100% homology with TEF, and 99% homology with actin of a Brazilian isolate. Pathogenicity tests with G. citricarpa were not done because the organism infects immature fruit and has an incubation period of at least 6 months (3). In addition, quarantine restrictions limit work with the organism outside a contained facility. To our knowledge, this is the first report of black spot in North America. The initial infested area was ~57 km2. The disease is of great importance to the Florida citrus industry because it causes serious blemishes and significant yield reduction, especially on the most commonly grown 'Valencia' sweet orange. Also, the presence of the disease in Florida may affect market access because G. citricarpa is considered a quarantine pathogen by the United States and internationally. References: (1) R. P. Baayen et al. Phytopathology 92:464, 2002. (2) N. A. Peres et al. Plant Dis. 91:525, 2007 (3) R. F. Reis et al. Fitopath Bras. 31:29, 2006.

9.
Plant Dis ; 96(4): 529-536, 2012 Apr.
Article in English | MEDLINE | ID: mdl-30727419

ABSTRACT

Botrytis fruit rot (BFR), caused by Botrytis cinerea, is a major disease of strawberry in Florida and is generally controlled by weekly fungicide applications. In this study, disease control programs using fungicides applied on a weekly basis were compared with applications based on three previously published models that correlated disease incidence with weather variables. Field trials were conducted for three seasons on two cultivars, 'Sweet Charlie' and 'Strawberry Festival'. Different thresholds for predicted BFR incidence were evaluated for triggering fungicide applications for the three models. BFR incidence in nontreated control plots of Sweet Charlie and Strawberry Festival was 12.4 and 3.5%, respectively, in 2006-07, 4.2 and 0.8% in 2007-08, and 1.3 and 0.5% in 2008-09. The model of Bulger and associates, with a threshold for disease flower incidence (INFBu) of 0.50, triggered half or fewer fungicide applications compared with a calendar-standard grower program, without significantly increasing BFR incidence or reducing yield. The model of Broome and associates, at a predicted fruit disease incidence threshold (INFBr) of 0.62, performed well but required more fungicide applications than the Bulger model (INFBu ≥ 0.50). The model of Xu and associates, based on field data to predict the incidence of diseased flowers, required more fungicide applications without improving disease control. Use of higher thresholds resulted in fewer applications but increased disease incidence in some cases. The Bulger model utilizing leaf wetness and temperature during the wetness period as input variables and a threshold of INFBu of 0.50 can be used effectively in a disease-forecasting system to time fungicide treatments, and greatly reduced the number of applications without loss of disease control or yield.

10.
Plant Dis ; 96(4): 522-528, 2012 Apr.
Article in English | MEDLINE | ID: mdl-30727420

ABSTRACT

Anthracnose fruit rot (AFR), caused by Colletotrichum acutatum, is a major disease of strawberry in Florida and is generally controlled by weekly fungicide applications. More than 20 applications may be made during the growing season, most commonly using captan and the quinone-outside inhibitors. Field experiments were conducted for three seasons on a susceptible and a partially resistant cultivar to evaluate the effectiveness of timing fungicide applications for managing AFR based on a previously published model by Wilson and associates that uses leaf wetness duration and temperature to predict fruit infection by C. acutatum under controlled conditions. For most treatments, rules were established where captan was applied when the predicted proportion of fruit infected (INF) from the model exceeded 0.15 and pyraclostrobin was applied when INF exceeded 0.5. For one model-timed treatment where captan and pyraclostrobin were applied before symptoms first appeared in the field, disease control was as good as the treatment where calendar weekly applications were made and the model-timed treatment utilized 47% fewer sprays. In treatments where fungicide application began after symptom appearance, the number of applications was reduced further but disease control was 40% less effective. Model-timed fungicide treatments that included pyraclostrobin gave better control than the treatments using captan alone. The model relating leaf wetness and temperature to predict AFR infection can be used effectively in a disease-forecasting system to time fungicide treatments and greatly reduce the number of applications without loss of disease control or yield.

11.
Plant Dis ; 95(11): 1474, 2011 Nov.
Article in English | MEDLINE | ID: mdl-30731750

ABSTRACT

White bird of paradise (Strelitzia nicolai Regel & K. Koch) is a commonly grown ornamental in central and south Florida. Each summer of 2004 to 2007, a reoccurring disease was observed at a commercial nursery in central Florida. Diseased plants had brown, necrotic stripes between the lateral leaf veins, which usually appeared along the midvein and spread toward the leaf edge. Lesions developed on the youngest leaves as they emerged from the central whorl. During 2004 and 2005, 20 symptomatic leaves were sampled. A white, nonfluorescent bacterium was consistently isolated from symptomatic tissue. It induced a hypersensitive response (HR) on tomato, grew at 41°C, and was identified as a Acidovorax sp. based on fatty acid analysis and as Acidovorax avenae subsp. avenae by Biolog metabolic phenotype analysis (similarity 0.76 to 0.86). A partial 16S rRNA gene sequence (1,455 bp) (Accession No. EF418616) was identical to four sequences in the NCBI (National Center for Biotechnology Information) database: one from A. avenae subsp. avenae and three from A. avenae of undetermined subspecies. To confirm pathogenicity, a bacterial suspension (O.D590 = 0.1) was applied to fill the central whorl (~0.5 to 1 ml) of potted S. nicolai. Plants were incubated for 7 to 10 days inside plastic bags at ambient temperature. Plants were inoculated individually with five strains of A. avenae subsp. avenae, four from S. nicolai, and one from corn (ATCC19860). Two to nine plants per strain were inoculated in each experiment. All strains were tested at least twice and noninoculated control plants were included. Symptoms were reproduced on the emerging leaf of 50 to 100% of inoculated plants with all five A. avenae subsp. avenae strains. No symptoms were observed on the controls. The bacteria recovered from symptomatic tissue were confirmed to be A. avenae subsp. avenae. Corn seedlings were inoculated as described above, except that entire seedlings were sprayed. Water-soaked lesions along the length of older leaf blades developed in 4 to 7 days. Only the corn strain was pathogenic (>80% of seedlings symptomatic), indicating host specificity. To our knowledge, this is the first report of A. avenae subsp. avenae infecting S. nicolai. In 1971, Wehlburg (2) described the same symptoms on orange bird of paradise (S. reginae) as being caused by a nonfluorescent Pseudomonas sp. This report likely describes the same disease since the published description is consistent with symptoms caused by A. avenae subsp. avenae. The pathogen reported by Wehlburg (2) had one polar flagellum, reduced nitrate, produced oxidase and a HR, and utilized arabinose, but not sucrose or arginine, characteristics consistent with those of A. avenae subsp. avenae (1). The only difference was A. avenae subsp. avenae has a delayed positive starch hydrolysis (1), whereas Welhburg's strain was negative. This disease occurs mainly on young leaves when plants receive daily overhead irrigation. Incidence can be as high as 40%, occasionally causing mortality, but even mild symptoms affect appearance and reduce marketability as an ornamental. References: (1) N. W. Schaad et al. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. The American Phytopathological Society, St. Paul, MN, 2001. (2) C. Wehlburg. Plant Dis. Rep. 55:447, 1971.

12.
Phytopathology ; 99(5): 620-31, 2009 May.
Article in English | MEDLINE | ID: mdl-19351258

ABSTRACT

Isolates of Colletotrichum acutatum were collected from anthracnose-affected strawberry, leatherleaf fern, and Key lime; ripe-rot-affected blueberry; and postbloom fruit drop (PFD)-affected sweet orange in Florida. Additional isolates from ripe-rot-affected blueberry were collected from Georgia and North Carolina and from anthracnose-affected leatherleaf fern in Costa Rica. Pathogenicity tests on blueberry and strawberry fruit; foliage of Key lime, leatherleaf fern, and strawberry; and citrus flowers showed that isolates were highly pathogenic to their host of origin. Isolates were not pathogenic on foliage of heterologous hosts; however, several nonhomologous isolates were mildly or moderately pathogenic to citrus flowers and blueberry isolates were pathogenic to strawberry fruit. Based on sequence data from the internal transcribed spacer (ITS)1-5.8S rRNA-ITS2 region of the rDNA repeat, the glutaraldehyde-3-phosphate dehydrogenase intron 2 (G3PD), and the glutamine synthase intron 2 (GS), isolates from the same host were identical or very similar to each other and distinct from those isolated from other hosts. Isolates from leatherleaf fern in Florida were the only exception. Among these isolates, there were two distinct G3PD and GS sequences that occurred in three of four possible combinations. Only one of these combinations occurred in Costa Rica. Although maximum parsimony trees constructed from genomic regions individually displayed little or no homoplasy, there was a lack of concordance among genealogies that was consistent with a history of recombination. This lack of concordance was particularly evident within a clade containing PFD, Key lime, and leatherleaf fern isolates. Overall, the data indicated that it is unlikely that a pathogenic strain from one of the hosts examined would move to another of these hosts and produce an epidemic.


Subject(s)
Colletotrichum/genetics , Colletotrichum/isolation & purification , Crops, Agricultural/microbiology , Ferns/microbiology , Fruit/microbiology , Host-Pathogen Interactions , Colletotrichum/enzymology , Colletotrichum/pathogenicity , Costa Rica , Florida , Fragaria/microbiology , Genes, Fungal , Glutamate-Ammonia Ligase/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Introns/genetics , Molecular Sequence Data , Phylogeny , Plant Diseases/microbiology , Recombination, Genetic/genetics , Restriction Mapping , United States
13.
Plant Dis ; 93(8): 815-820, 2009 Aug.
Article in English | MEDLINE | ID: mdl-30764332

ABSTRACT

The ability of fungicides to control Colletotrichum crown rot of strawberry caused by C. gloeosporioides was examined over three seasons. A single application of each fungicide was made 2 days before inoculation (2 DBI) or 1 day after inoculation (1 DAI) with conidial suspensions of C. gloeosporioides. The proportion of plants collapsed on one date at the end of each season was evaluated. In a combined analysis, there was a significant fungicide treatment-season interaction (P = 0.004). Percent mortality was 64% over 3 years in control plots that were inoculated with C. gloeosporioides but not treated with fungicide. Captan applied 2 DBI consistently reduced plant mortality (mean mortality = 17%). However, it was not as effective when applied 1 DAI (mean mortality = 46%). Azoxystrobin, pyraclostrobin, and thiophanate-methyl all reduced plant mortality relative to the control if applied 2 DBI (mean mortality = 46% for azoxystrobin, 37% for pyraclostrobin, and 41% for thiophanate-methyl) or 1 DAI (mean mortality = 29% for azoxystrobin, 27% for pyraclostrobin, and 32% for thiophanate-methyl). Results indicated that these fungicides were more effective when applied 1 DAI; however, lower plant mortality was not always observed with postinoculation applications. Cyprodinil + fludioxonil reduced mortality relative to the control, but there was no consistent evidence that it was more effective when applied at 2 DBI (mean mortality = 39%) than when applied 1 DAI (mean mortality = 40%). Similarly, mortality in plots treated with thiram 2 DBI (mean mortality = 30%) or 1 DAI (mean mortality = 32%) was not different. Potassium phosphite did not affect mortality, regardless of the timing of application (2 DBI mean mortality = 61%, 1 DAI mean mortality = 67%). The results indicated that an effective strategy for controlling Colletotrichum crown rot caused by C. gloeosporioides should be based on weekly applications of captan throughout the growing season. Azoxystrobin, pyraclostrobin, or thiophanate-methyl applications should be applied when weather conditions are highly favorable for disease development and the activity of contact fungicides such as captan or thiram might be compromised.

14.
Phytopathology ; 98(3): 345-52, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18944086

ABSTRACT

Colletotrichum acutatum causes two diseases of citrus, postbloom fruit drop (PFD) and Key lime anthracnose (KLA). PFD is a disease restricted to flowers of sweet orange and most other citrus, and symptoms include petal necrosis, abscission of developing fruit, and the formation of persistent calyces. KLA is a disease of foliage, flowers, and fruits of Key lime only, and symptoms include necrotic lesions on leaves, fruits, twigs, flowers, and blight of entire shoots. The internal transcribed spacers 1 and 2 and the gene encoding the 5.8S ribosomal RNA subunit within the nuclear ribosomal cluster (ITS) and intron 2 of the glyceraldehyde-3-phosphate dehydrogenase gene (G3PD) were sequenced for isolates from PFD-affected sweet orange and KLA-affected Key limes collected in the United States (Florida), Brazil (São Paulo), Mexico, Belize, Costa Rica, and the Dominican Republic to determine if there are consistent genetic differences between PFD and KLA isolates over the geographic area where these diseases occur. Based on the sequence data, isolates clustered into two well-supported clades with little or no sequence variation among isolates within clades. One clade (PFD clade) contained PFD isolates from all countries sampled plus a few isolates from flowers of Key lime in Brazil. The other clade (KLA clade) contained KLA isolates from Key lime foliage from all countries sampled and one isolate from flowers of sweet orange in Mexico. In greenhouse inoculations with PFD and KLA isolates from Florida, isolates from both clades produced PFD symptoms on Orlando tangelo flowers, but KLA-clade isolates produced significantly less severe symptoms. PFD-clade isolates were not pathogenic to Key lime foliage, confirming previous studies. The differentiation of PFD and KLA isolates into two well-supported clades and the pathogenicity data indicate that PFD and KLA are caused by distinct phylogenetic lineages of C. acutatum that are also biologically distinct. PFD is a recently described disease (first reported in 1979) relative to KLA (first reported in 1912) and it had been proposed that strains causing PFD evolved from strains causing KLA eventually losing pathogenicity to Key lime foliage. We reject the hypothesis that PFD strains have diverged from KLA strains recently based on estimated divergence times of haplotypes and it appears that PFD and KLA strains have been dispersed throughout the Americas independently in association with each host.


Subject(s)
Citrus/microbiology , Colletotrichum/physiology , Flowers/microbiology , Plant Diseases/microbiology , Colletotrichum/classification , Colletotrichum/genetics , DNA, Fungal/chemistry , DNA, Fungal/genetics , Host-Pathogen Interactions , Phylogeny , Sequence Analysis, DNA
15.
Plant Dis ; 92(10): 1432-1438, 2008 Oct.
Article in English | MEDLINE | ID: mdl-30769574

ABSTRACT

Evidence that Colletotrichum fragariae causes disease on hosts other than strawberry is limited. In the fall of 2006, fungal isolates from silver date palm with leaf spot symptoms and from cyclamen with leaf spot and stem rot symptoms were identified as C. fragariae. After confirming the pathogenicity of the isolates on their host of origin, a representative isolate from each host was compared to C. fragariae and to C. gloeosporioides/Glomerella cingulata isolates from strawberry. Date palm and cyclamen isolates bore conidia on setae, and conidia were tapered and in the size range of C. fragariae reference isolates. Sequence data from the combined internal transcribed spacer (ITS) regions 1 and 2 and the gene for the 5.8 ribosomal RNA from the cyclamen and date palm isolates matched the sequence for C. fragariae reference isolates. Based on these characteristics, it was concluded that the C. fragariae species designation was correct for both isolates. However, the date palm isolate was a weak pathogen on strawberry compared with other isolates and had a distinct AT-rich DNA banding pattern. The ability of the cyclamen isolate to cause crown rot on strawberry was comparable with the strawberry reference isolates, and the AT-rich DNA banding pattern of the cyclamen isolate was identical to the C. fragariae isolates from strawberry. The results indicate that C. fragariae is a pathogen on hosts other than strawberry and that there is more diversity among C. fragariae isolates than previously reported.

16.
Phytopathology ; 97(9): 1130-40, 2007 Sep.
Article in English | MEDLINE | ID: mdl-18944178

ABSTRACT

ABSTRACT Colletotrichum gloeosporioides causes a serious crown rot of strawberry and some isolates from native plants are pathogenic to strawberry. C. gloeosporioides from lesions on wild grape and oak were sampled at two sites adjacent to commercial strawberry fields in Florida and two distant sites. Random amplified polymorphic DNA (RAPD) marker data and restriction enzyme digests of amplified rDNA were used to determine whether isolates were from the same C. gloeosporioides subgroup that infects strawberry. There were 17 to 24 native host isolates from each site that clustered with a group of strawberry crown isolates based on RAPD markers. Among strawberry isolates, there were two rDNA genotypes identified by restriction enzyme analysis. Both genotypes were present among native host isolates sampled from all four sites. There was some evidence that the different rDNA genotypes differentiated two closely related subpopulations, although the proportion of pathogenic isolates from native hosts among the two different genotypes was not different. The incidence of isolates pathogenic to strawberry was greater at sites close to strawberry fields relative to sites distant from strawberry fields for isolates with a BstUI(-)/MspI(+) rDNA genotype (44 versus 13%), a BstUI(+)/MspI(-) genotype (57 versus 16%), or when both genotypes were analyzed together (46 versus 15%). Based on these results, it appears that the C. gloeosporioides subgroup that causes crown rot on strawberry is widely distributed in Florida and that selection for pathogenicity on strawberry occurs in the area where this host is grown in abundance.

17.
Plant Dis ; 91(7): 865-870, 2007 Jul.
Article in English | MEDLINE | ID: mdl-30780398

ABSTRACT

Two scab pathogens of citrus, Elsinoë fawcettii and E. australis, cause citrus scab and sweet orange scab, respectively, and pathotypes of each species have been described. The two species cannot be readily distinguished by morphological or cultural characteristics and can be distinguished only by host range and the sequence of the internal transcribed spacer (ITS) region. In this study, random amplified polymorphic DNA (RAPD) assays clearly distinguished E. fawcettii and E. australis, and the sweet orange and natsudaidai pathotypes within E. australis also could be differentiated. We developed specific primer sets, Efaw-1 for E. fawcettii; Eaut-1, Eaut-2, Eaut-3, and Eaut-4 for E. australis; and EaNat-1 and EaNat-2 for the natsudaidai pathotype within E. australis using RAPD products unique to each species or pathotype. Other primer sets, Efaw-2 and Eaut-5, which were specific for E. fawcettii and E. australis, respectively, were designed from previously determined ITS sequences. The Efaw-1 and Efaw-2 primer sets successfully identified E. fawcettii isolates from Korea, Australia, and the United States (Florida) and the Eaut-1 to Eaut-5 primer sets identified both the sweet orange pathotype isolates of E. australis from Argentina and the natsudaidai pathotype isolates from Korea. The EaNat-1 and EaNat-2 primer sets were specific for isolates of the natsudaidai pathotype. The Efaw-1 and Efaw-2 primer sets successfully detected E. fawcettii from lesions on diseased leaves and fruit from Korea and primer pairs Eaut-1, Eaut-2, Eaut-3, Eaut-4, and Eaut-5 detected E. australis from lesions on sweet orange fruit from Brazil.

18.
Plant Dis ; 91(6): 772, 2007 Jun.
Article in English | MEDLINE | ID: mdl-30780505

ABSTRACT

The genus Salvia includes at least 900 species distributed worldwide. Wild species are found in South America, southern Europe, northern Africa, and North America. Salvia, commonly referred to as sage, is grown commercially as a landscape plant. In August 2006, pale-to-dark brown, circular leaf spots 5 to 20 mm in diameter with concentric rings were observed on Salvia farinacea 'Victoria Blue'. Approximately 5% of the plants in a central Florida nursery were affected. Lesions were visible on both leaf surfaces, and black sporodochia with white, marginal hyphal tuffs were present mostly on the lower surface in older lesions. Symptoms were consistent with those of Myrothecium leaf spot described on other ornamentals such as gardenia, begonia, and New Guinea impatiens (4). Isolations from lesions on potato dextrose agar produced white, floccose colonies with sporodochia in dark green-to-black concentric rings. Conidia were hyaline and cylindrical with rounded ends and averaged 7.4 × 2.0 µm. All characteristics were consistent with the description of Myrothecium roridum Tode ex Fr. (2,3). The internal transcribed spacer regions ITS1, ITS2, and the 5.8s rRNA genomic region of one isolate were sequenced (Accession No. EF151002) and compared with sequences in the National Center for Biotechnology Information (NCBI) database. Deposited sequences from M. roridum were 96.3 to 98.8% homologous to the isolate from salvia. To confirm pathogenicity, three salvia plants were inoculated by spraying with a conidial suspension of M. roridum (1 × 105 conidia per ml). Plants were covered with plastic bags and incubated in a growth chamber at 28°C for 7 days. Three plants were sprayed with sterile, distilled water as a control and incubated similarly. The symptoms described above were observed in all inoculated plants after 7 days, while control plants remained symptomless. M. roridum was reisolated consistently from symptomatic tissue. There are more than 150 hosts of M. roridum, including one report on Salvia spp. in Brunei (1). To our knowledge, this is the first report of Myrothecium leaf spot caused by M. roridum on Salvia spp. in the United States. Even the moderate level disease present caused damage to the foliage and reduced the marketability of salvia plants. Therefore, control measures may need to be implemented for production of this species in ornamental nurseries. References: (1) D. F. Farr et al. Fungal Databases. Systematic Botany and Mycology Laboratory. Online publication. ARS, USDA, 2006, (2) M. B. Ellis. Page 449 in: Microfungi on Land Plants: An Identification Handbook. Macmillan Publishing, NY, 1985. (3) M. Fitton and P. Holliday. No. 253 in: CMI Descriptions of Pathogenic Fungi and Bacteria. The Eastern Press Ltd. Great Britain, 1970. (4) M. G. Daughtrey et al. Page 19 in: Compendium of Flowering Potted Plant Diseases. The American Phytopathological Society. St. Paul, MN, 1995.

19.
Plant Dis ; 91(5): 525-531, 2007 May.
Article in English | MEDLINE | ID: mdl-30780696

ABSTRACT

Citrus black spot, caused by Guignardia citricarpa, is a serious fruit spot disease and is widely distributed in Asia, southern Africa, and South America, but does not occur in North America or the Mediterranean region. A nonpathogenic species, G. mangiferae, is cosmopolitan with a wide host range and can colonize citrus fruit and leaves saprophytically. Detection and identification of Guignardia spp. on citrus fruit is necessary for epidemiological, management, and regulatory purposes. In this study, we compared published and unpublished polymerase chain reaction primer sets for their specificity and sensitivity in the detection and differentiation of the two Guignardia spp. All primers evaluated successfully identified the two species using purified DNA from fungal cultures or mycelia as source materials. However, some primer sets were not highly effective in detecting G. citricarpa when DNA was extracted directly from single characteristic black spot lesions on fruit. Thus, new primer pairs for both species were designed from the internal transcribed spacer region that were highly sensitive and specific for detection of G. citricarpa using DNA recovered from single lesions on fruit by a rapid DNA extraction procedure.

20.
Plant Dis ; 90(11): 1419-1424, 2006 Nov.
Article in English | MEDLINE | ID: mdl-30780909

ABSTRACT

Citrus black spot (CBS) is caused by Guignardia citricarpa, which incites lesions on citrus fruit and can induce fruit drop. Quiescent infections occur during the spring and summer, and symptoms appear at fruit maturity or after harvest. Thus, fruit from citrus areas affected by CBS represent a risk for introduction of this pathogen into new areas. The effects of preventive field fungicide programs, postharvest fungicide drenches, packinghouse fungicide applications, and storage temperatures on postharvest symptom development and viability of G. citricarpa in lesions were evaluated in five experiments on Murcott tangor, Valencia oranges, and lemons. Preventive field treatments and fruit storage at 8°C consistently reduced postharvest CBS development, whereas a postharvest fungicide drench or packinghouse treatment with fungicides had no effect on postharvest symptom development. In a separate experiment, postharvest appearance of symptoms was related to the percentage of fruit with symptoms at harvest. The preventive field fungicide program also consistently reduced the percentage of isolation of G. citricarpa from affected fruit, whereas storage temperature and packinghouse fungicide treatment gave variable results. The viability of the fungus declined with storage time of fruit after harvest, but G. citricarpa could still be readily isolated regardless of treatment. In another experiment, the viability of the fungus in detached fruit or peel was minimally affected by temperature or moisture during storage. The frequency of successful isolation declined with time, but G. citricarpa was still recovered frequently from symptomatic tissue at later times. The most effective means to reduce postharvest development of symptoms is through preventive application of fungicides during the fruit growing season and storage of harvested fruit at cold temperatures. None of the measures evaluated substantially reduced viability of G. citricarpa, and the pathogen would likely be introduced on symptomatic fruit from citrus areas with CBS.

SELECTION OF CITATIONS
SEARCH DETAIL
...