Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrason Sonochem ; 75: 105588, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34004458

ABSTRACT

The effect of low-frequency high-power ultrasound on hydrocarbon-based ionomers, cation exchange sulfonated phenylated polyphenylene (sPPB-H+) and anion exchange hexamethyl-p-terphenyl poly(benzimidazolium) (HMT-PMBI), was studied. Ionomer solutions were subjected to ultrasonication at fixed ultrasonic frequencies (f = 26 and 42 kHz) and acoustic power (Pacous = 2.1 - 10.6 W) in a laboratory-grade ultrasonication bath, and a probe ultrasonicator; both commonly employed in catalyst ink preparation in research laboratory scale. Power ultrasound reduced the polymer solution viscosity of both hydrocarbon-based ionomers. The molecular weight of sPPB-H+ decreased with irradiation time. Changes in viscosity and molecular weight were exacerbated when ultrasonicated in an ice bath; but reduced when the solutions contained carbon black, as typically used in Pt/C-based catalyst inks. Spectroscopic analyses revealed no measurable changes in polymer structure upon ultrasonication, except for very high doses, where evidence for free-radical induced degradation was observed. Ionomers subjected to ultrasound were used to prepare catalyst layers and membrane electrode assemblies (MEA)s. Despite the changes in the ionomer described above, no significant differences in electrochemical performance were found between MEAs prepared with ionomers pre-subjected to ultrasound and those that were not, suggesting that fuel cell performance is tolerant to ionomers subjected to ultrasound.

2.
Ultrason Sonochem ; 60: 104758, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31505419

ABSTRACT

The effect of low frequency power ultrasound on Nafion® ionomer used for fabricating proton exchange membrane fuel cell (PEMFC) and water electrolyzer (PEMWE) catalyst inks was investigated. In this study, a series of Nafion® dispersions having three concentrations (10, 5, and 2.5% w/v) were studied under various irradiation durations (tus), at fixed ultrasonic frequency (f = 42 kHz) and ultrasonic power (P > 2 W), under either controlled or unregulated bulk solution temperature conditions using a laboratory ultrasonic cleaning bath. Viscosity (η), thermal degradation, and glass transition temperature (Tg) for all Nafion® dispersion samples was measured and compared to untreated Nafion® samples. In our conditions, it was found that power ultrasound lowered the viscosity of all tested Nafion® dispersion samples; whilst thermogravimetric and differential scanning calorimetry analyses showed that for all ultrasonically irradiated samples, a negligible overall polymer degradation and no obvious change in Tg was observed under controlled and unregulated bulk temperature conditions. It was found that it is possible that acoustic cavitation causes depolymerisation followed by a polymerisation initiation step during ultrasonication. By comparing the ultrasonically treated and high-shear mixed samples, it was also observed that acoustic and hydrodynamic cavitation played an important role in the reduction of dispersion viscosity.

3.
Angew Chem Int Ed Engl ; 56(48): 15257-15261, 2017 11 27.
Article in English | MEDLINE | ID: mdl-28984017

ABSTRACT

Acylboronate esters/trifluoroborates represent an elusive class of boronates that are of increasing interest for both fundamental study as well as applications at the interface of chemistry and biology. Their preparation has been limited by the use of strongly basic anions, often introduced in multistep reactions. Herein, we demonstrate the facile preparation of acylboronate N-methyliminodiacetyl (MIDA) esters from alkenyl-2-boronate esters through mild dihydroxylation and meta-periodate cleavage. Given the well-known functional-group tolerance of this mild reaction sequence and the availability of alkenyl-2-boronates, this method should greatly increase access to acylboronate MIDA esters.

SELECTION OF CITATIONS
SEARCH DETAIL
...