Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 13(20)2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34680208

ABSTRACT

The mitogen-activated protein kinase (MAPK) pathway, consisting of the Ras-Raf-MEK-ERK signaling cascade, regulates genes that control cellular development, differentiation, proliferation, and apoptosis. Within the cascade, multiple isoforms of Ras and Raf each display differences in functionality, efficiency, and, critically, oncogenic potential. According to the NCI, over 30% of all human cancers are driven by Ras genes. This dysfunctional signaling is implicated in a wide variety of leukemias and solid tumors, both with and without viral etiology. Due to the strong evidence of Ras-Raf involvement in tumorigenesis, many have attempted to target the cascade to treat these malignancies. Decades of unsuccessful experimentation had deemed Ras undruggable, but recently, the approval of Sotorasib as the first ever KRas inhibitor represents a monumental breakthrough. This advancement is not without novel challenges. As a G12C mutant-specific drug, it also represents the issue of drug target specificity within Ras pathway; not only do many drugs only affect single mutational profiles, with few pan-inhibitor exceptions, tumor genetic heterogeneity may give rise to drug-resistant profiles. Furthermore, significant challenges in targeting downstream Raf, especially the BRaf isoform, lie in the paradoxical activation of wild-type BRaf by BRaf mutant inhibitors. This literature review will delineate the mechanisms of Ras signaling in the MAPK pathway and its possible oncogenic mutations, illustrate how specific mutations affect the pathogenesis of specific cancers, and compare available and in-development treatments targeting the Ras pathway.

2.
Biol Reprod ; 96(3): 551-562, 2017 03.
Article in English | MEDLINE | ID: mdl-28203719

ABSTRACT

Obesity has been linked with a host of metabolic and reproductive disorders including polycystic ovary syndrome (PCOS). While a clear association exists between obesity and PCOS, the exact nature of this relationship remains unexplained. The primary symptoms of PCOS include hyperandrogenism, anovulation, and polycystic ovaries. Most animal models utilize androgen treatments to induce PCOS. However, these models often fail to address the underlying causes of the disease and do not effectively reproduce key metabolic features such as hyperinsulinemia. Here, we present a novel rodent model of diet-induced obesity that recapitulates both the metabolic and reproductive phenotypes of human PCOS. Rats on a high-fat high-sugar (HFHS) diet not only demonstrated signs of metabolic impairment, but they also developed polycystic ovaries and experienced irregular estrous cycling. Though hyperandrogenism was not characteristic of HFHS animals as a group, elevated testosterone levels were predictive of high numbers of ovarian cysts. Alterations in steroidogenesis and folliculogenesis gene expression were also found via RNA sequencing of ovarian tissue. Importantly, the PCOS-like symptoms induced in these rats may share a similar etiology to PCOS in humans. Therefore, this model offers a unique opportunity to study PCOS at its genesis rather than following the development of disease symptoms.

SELECTION OF CITATIONS
SEARCH DETAIL
...