Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gut Microbes ; 14(1): 2120749, 2022.
Article in English | MEDLINE | ID: mdl-36226673

ABSTRACT

The Mediterranean diet (MED) is associated with the modification of gut microbial composition. In this pilot study, we investigate the feasibility of a microbiota-targeted MED-based lifestyle intervention in healthy subjects. MED intervention integrating dietary counseling, a supporting mobile application, and daily physical activity measurement using step trackers was prospectively applied for 4 weeks. Blood and fecal samples were collected at baseline, after the 4-week intervention, and at 6 and 12 months. Blood counts, inflammatory markers, microbial and eukaryotic composition were analyzed. Dietary adherence was assessed using daily questionnaires. All 20 healthy participants (females 65%, median age 37), completed the 4-week intervention. Adherence to MED increased from 15.6 ± 4.1 (baseline) to 23.2 ± 3.6 points (4 weeks), p < .01, reflected by increased dietary fiber and decreased saturated fat intake (both p < .05). MED intervention modestly reduced fecal calprotectin, white blood cell, neutrophil, and lymphocyte counts, within the normal ranges (P < .05). Levels of butyrate producers including Faecalibacterium and Lachnospira were positively correlated with adherence to MED and the number of daily steps. Bacterial composition was associated with plant-based food intake, while fungal composition with animal-based food as well as olive oil and sweets. Increasing adherence to MED correlated with increased absolute abundances of multiple beneficial gut symbionts. Therefore, increasing adherence to MED is associated with reduction of fecal calprotectin and beneficial microbial alterations in healthy subjects. Microbiota targeted lifestyle interventions may be used to modify the intestinal ecosystem with potential implications for microbiome-mediated diseases.


Subject(s)
Diet, Mediterranean , Gastrointestinal Microbiome , Microbiota , Adult , Animals , Butyrates , Diet , Dietary Fiber , Feces/microbiology , Female , Healthy Volunteers , Humans , Leukocyte L1 Antigen Complex , Life Style , Male , Olive Oil , Pilot Projects
2.
Sci Rep ; 5: 14333, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26387443

ABSTRACT

Prophages of Helicobacter pylori, a bacterium known to co-evolve in the stomach of its human host, were recently identified. However, their role in the diversity of H. pylori strains is unknown. We demonstrate here and for the first time that the diversity of the prophage genes offers the ability to distinguish between European populations, and that H. pylori prophages and their host bacteria share a complex evolutionary history. By comparing the phylogenetic trees of two prophage genes (integrase and holin) and the multilocus sequence typing (MLST)-based data obtained for seven housekeeping genes, we observed that the majority of the strains belong to the same phylogeographic group in both trees. Furthermore, we found that the Bayesian analysis of the population structure of the prophage genes identified two H. pylori European populations, hpNEurope and hpSWEurope, while the MLST sequences identified one European population, hpEurope. The population structure analysis of H. pylori prophages was even more discriminative than the traditional MLST-based method for the European population. Prophages are new players to be considered not only to show the diversity of H. pylori strains but also to more sharply define human populations.


Subject(s)
Genetic Variation , Helicobacter pylori/virology , Prophages/genetics , Europe , Evolution, Molecular , Genes, Viral , Genome, Bacterial , Helicobacter pylori/genetics , Humans , Multilocus Sequence Typing , Phylogeography
SELECTION OF CITATIONS
SEARCH DETAIL
...