Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosurg Rev ; 47(1): 31, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38177718

ABSTRACT

Visual field deficits (VFDs) are common in patients with temporal and occipital lobe lesions. Diffusion tensor fiber tractography (DTI-FT) is widely used for surgery planning to reduce VFDs. Q-ball high-resolution fiber tractography (QBI-HRFT) improves upon DTI. This study aims to evaluate the effectiveness of DTI-FT and QBI-HRFT for surgery planning near the optic radiation (OR) as well as the correlation between VFDs, the nearest distance from the lesion to the OR fiber bundle (nD-LOR), and the lesion volume (LV). This ongoing prospective clinical trial collects clinical and imaging data of patients with lesions in deterrent areas. The present subanalysis included eight patients with gliomas near the OR. Probabilistic HRFT based on QBI-FT and conventional DTI-FT were performed for OR reconstruction based on a standard diffusion-weighted magnetic resonance imaging sequence in clinical use. Quantitative analysis was used to evaluate the lesion volume (LV) and nD-LOR. VFDs were determined based on standardized automated perimetry. We included eight patients (mean age 51.7 years [standard deviation (SD) 9.5]) with lesions near the OR. Among them, five, two, and one patients had temporodorsal, occipital, and temporal lesions, respectively. Four patients had normal vision preoperatively, while four patients had preexisting VFD. QBI-FT analysis indicated that patients with VFD exhibited a significantly smaller median nD-LOR (mean, -4.5; range -7.0; -2.3) than patients without VFD (mean, 7.4; range -4.3; 27.2) (p = 0.050). There was a trend towards a correlation between tumor volume and nD-LOR when QBI-FT was used (rs = -0.6; p = 0.056). A meticulous classification of the spatial relationship between the lesions and OR according to DTI-FT and QBI-FT was performed. The results indicated that the most prevalent orientations were the FT bundles located laterally and intrinsically in relation to the tumor. Compared with conventional DTI-FT, QBI-FT suggests reliable and more accurate results when correlated to preoperative VFDs and might be preferred for preoperative planning and intraoperative use of nearby lesions, particularly for those with larger volumes. A detailed analysis of localization, surgical approach together with QBI-FT and DTI-FT could reduce postoperative morbidity regarding VFDs. The display of HRFT techniques intraoperatively within the navigation system should be pursued for this issue.


Subject(s)
Glioma , Visual Fields , Humans , Middle Aged , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging/methods , Glioma/surgery , Prospective Studies
2.
Schizophr Res ; 263: 160-168, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37236889

ABSTRACT

The number of magnetic resonance imaging (MRI) studies on neuronal correlates of catatonia has dramatically increased in the last 10 years, but conclusive findings on white matter (WM) tracts alterations underlying catatonic symptoms are still lacking. Therefore, we conduct an interdisciplinary longitudinal MRI study (whiteCAT) with two main objectives: First, we aim to enroll 100 psychiatric patients with and 50 psychiatric patients without catatonia according to ICD-11 who will undergo a deep phenotyping approach with an extensive battery of demographic, psychopathological, psychometric, neuropsychological, instrumental and diffusion MRI assessments at baseline and 12 weeks follow-up. So far, 28 catatonia patients and 40 patients with schizophrenia or other primary psychotic disorders or mood disorders without catatonia have been studied cross-sectionally. 49 out of 68 patients have completed longitudinal assessment, so far. Second, we seek to develop and implement a new method for semi-automatic fiber tract delineation using active learning. By training supportive machine learning algorithms on the fly that are custom tailored to the respective analysis pipeline used to obtain the tractogram as well as the WM tract of interest, we plan to streamline and speed up this tedious and error-prone task while at the same time increasing reproducibility and robustness of the extraction process. The goal is to develop robust neuroimaging biomarkers of symptom severity and therapy outcome based on WM tracts underlying catatonia. If our MRI study is successful, it will be the largest longitudinal study to date that has investigated WM tracts in catatonia patients.


Subject(s)
Catatonia , White Matter , Humans , Catatonia/diagnosis , White Matter/diagnostic imaging , White Matter/pathology , Longitudinal Studies , Reproducibility of Results , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL
...