Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791510

ABSTRACT

α-CD:N2O "host-guest" type complexes were formed by a simple solid-gas reaction (N2O sorption into α-CD) under different gas pressures and temperatures. The new N2O inclusion method applied in the present study was compared with the already known technique based on the crystallization of clathrates from a water solution of α-CD saturated with N2O. A maximum storage capacity of 4.5 wt.% N2O was achieved when charging the cyclodextrin from a gas phase. The amount of included gas decreases to 1.3 wt.% when the complex is stored in air at 1 atm and room temperature, analogous to that achieved by the crystallization of α-CD:N2O. Furthermore, it was shown that the external coordination of N2O to either the upper or lower rim of α-CD without hydration water displacement is the preferred mode of binding, due to hydrogen bonds with neighboring -OH groups from the host macrocycle and three of the hydration water molecules nearby. The capacity of α-CD to store N2O and the thermal stability of the α-CD:N2O complex demonstrated promising applications of these types of complexes in food and beverages.


Subject(s)
alpha-Cyclodextrins , alpha-Cyclodextrins/chemistry , Hydrogen Bonding , Temperature , Nitrogen Dioxide/chemistry , Water/chemistry , Adsorption
2.
J Agric Food Chem ; 63(29): 6603-13, 2015 Jul 29.
Article in English | MEDLINE | ID: mdl-26132981

ABSTRACT

"Cyclodextrin-gas" clathrates were obtained by crystallization from water solution of α-, ß-, and γ-cyclodextrins (CDs) under pressure of the gas to be entrapped into the CD molecules. When the pressure is released, these clathrates are stable at ambient conditions and dissociate at elevated temperature, which makes them interesting for various applications as foam boosters in food and other industries. It was found that under these conditions α-CD forms clathrates with all of the gases used in this study (N2, N2O, CO2, Ar), whereas ß- and γ-CDs can form clathrates only with N2. The concentration of the cyclodextrin and the temperature and pressure of the gas were varied for achieving higher clathrate yield and larger amount of embedded gas. Highest values of about 2 wt % were found for α-CD-N2O, as it releases in the temperature range of 40-60 °C.


Subject(s)
Cyclodextrins/chemistry , Gases/chemistry , Argon/chemistry , Carbon Dioxide/chemistry , Crystallization , Drug Stability , Nitrogen/chemistry , Nitrous Oxide/chemistry , Pressure , Temperature , alpha-Cyclodextrins/chemistry , beta-Cyclodextrins/chemistry , gamma-Cyclodextrins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...