Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Neurosci Lett ; 818: 137536, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37898181

ABSTRACT

It has already been shown that serotonin can release endocannabinoids at the spinal cord level, culminating in inhibition of the dorsal horn. At the peripheral level, cannabinoid receptors modulate primary afferent neurons by inhibiting calcium conductance and increasing potassium conductance. Studies have shown that after the activation of opioid receptors and cannabinoids, there is also the activation of the NO/cGMP/KATP pathway, inducing cellular hyperpolarization. In this study, we evaluated the participation of the cannabinoid system with subsequent activation of the NO/cGMP/KATP pathway in the peripheral antinociceptive effect of serotonin. The paw pressure test of mice was used in animals that had their sensitivity to pain increased due to an intraplantar injection of PGE2 (2 µg). Serotonin (250 ng/paw), administered locally in the right hind paw, induced antinociceptive effect. CB1 and CB2 cannabinoid receptors antagonists, AM251 (20, 40 and 80 µg) and AM630 (25, 50 and 100 µg), respectively, reversed the serotonin-induced antinociceptive effect. MAFP (0.5 µg), an inhibitor of the FAAH enzyme that degrades anandamide, and JZL184 (3.75 µg), an inhibitor of the enzyme MAGL that degrades 2-AG, as well as the VDM11 (2.5 µg) inhibitor of anandamide reuptake, potentiated the antinociceptive effect induced by a low dose (62. 5 ng) of serotonin. In the evaluation of the participation of the NO/cGMP/KATP pathway, the antinociceptive effect of serotonin was reversed by the administration of the non-selective inhibitor of NOS isoforms L-NOarg (12.5, 25 and 50 µg) and by the selective inhibitor for the neuronal isoform LNPA (24 µg), as well as by the soluble guanylate cyclase inhibitor ODQ (25, 50 and 100 µg). Among potassium channel blockers, only Glibenclamide (20, 40 and 80 µg), an ATP-sensitive potassium channel blocker, reversed the effect of serotonin. In addition, intraplantar administration of serotonin (250 ng) was shown to induce a significant increase in nitrite levels in the homogenate of the plantar surface of the paw of mice. Taken together, these data suggest that the antinociceptive effect of serotonin occurs by activation of the cannabinoid system with subsequent activation of the NO/cGMP/KATP pathway.


Subject(s)
Cannabinoids , Mice , Animals , Cannabinoids/metabolism , Analgesics/pharmacology , Serotonin/pharmacology , Potassium Channel Blockers , Receptors, Cannabinoid , Adenosine Triphosphate , Hyperalgesia/metabolism
2.
Life Sci ; 293: 120279, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35032552

ABSTRACT

BACKGROUND: Curcumin is one of the compounds present in plants of the genus Curcuma sp., being very used not only as condiment but also with medicinal purposes. As an analgesic, papers highlight the efficacy of curcumin in the treatment of various types of pain. AIMS: In this study we evaluated the peripheral antinociceptive effect of curcumin and by which mechanisms this effect is induced. MAIN METHODS: The mice paw pressure test was used on animals which had increased pain sensitivity by intraplantar injection of carrageenan. All the drugs were administered in the right hind paw. KEY FINDINGS: Curcumin was administered to the right hind paw animals induced antinociceptive effect. Non -selective antagonist of opioid receptors naloxone reverted the antinociceptive effect induced by curcumin. Selective antagonists for µ, δ and κ opioid receptors clocinnamox, naltrindole and nor- binaltorphimine, respectively, reverted the antinociceptive effect induced by curcumin. Bestatin, enkephalinases inhibitor that degrade peptides opioids, did not change the nociceptive response. Selective antagonists for CB1 and CB2 cannabinoid receptors, AM251 and AM630, respectively, reversed the antinociceptive effect induced by curcumin. The MAFP inhibitor of the enzyme FAAH which breaks down anandamide, JZL184, enzyme inhibitor MAGL which breaks down the 2-AG, as well as the VDM11 anandamide reuptake inhibitor potentiated the antinociceptive effect of curcumin. SIGNIFICANCE: These results suggest that curcumin possibly peripheral antinociception induced by opioid and cannabinoid systems activation and possibly for endocannabinoids and opioids release.


Subject(s)
Analgesics/therapeutic use , Cannabinoid Receptor Agonists/therapeutic use , Curcumin/therapeutic use , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Receptors, Opioid/metabolism , Analgesics/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Arachidonic Acids/pharmacology , Arachidonic Acids/therapeutic use , Cannabinoid Receptor Agonists/pharmacology , Carrageenan/toxicity , Cinnamates/pharmacology , Curcumin/pharmacology , Dose-Response Relationship, Drug , Endocannabinoids/pharmacology , Endocannabinoids/therapeutic use , Hyperalgesia/chemically induced , Male , Mice , Morphine Derivatives/pharmacology , Narcotic Antagonists/pharmacology , Pain/chemically induced , Pain/drug therapy , Pain/metabolism , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/therapeutic use
3.
Braz. J. Pharm. Sci. (Online) ; 58: e201089, 2022. tab, graf
Article in English | LILACS | ID: biblio-1420429

ABSTRACT

Abstract Protease-activated receptors (PARs) are metabotropic G-protein-coupled receptors that are activated via proteolytic cleavage of a specific sequence of amino acids in their N-terminal region. PAR2 has been implicated in mediating allergic airway inflammation. This study aims to study the effect of PAR2 antagonist ENMD1068in lung inflammation and airway remodeling in experimental asthma. Allergic lung inflammation was induced in sensitized BALB/c mice through intranasal instillations of ovalbumin (OVA), and mice were pretreated with ENMD1068 1 hour before each OVA challenge. Bronchoalveolar lavage fluid (BALF) was collected, and the lungs were removed at different time intervals after OVA challenge to analyze inflammation, airway remodeling and airway hyperresponsiveness. Ovalbumin promoted leukocyte infiltration into BALF in a PAR2-dependent manner. ENMD1068 impaired eosinophil peroxidase (EPO) and myeloperoxidase (MPO) activity in the lung parenchyma into BALF and reduced the loss of dynamic pulmonary compliance, lung resistance in response to methacholine, mucus production, collagen deposition and chemokine (C-C motif) ligand 5 expression compared to those in OVA-challenged mice. We propose that proteases released after an allergen challenge may be crucial to the development of allergic asthma in mice, and PAR2 blockade may be useful as a new pharmacological approach for the treatment of airway allergic diseases.


Subject(s)
Animals , Female , Mice , Pneumonia/pathology , Receptor, PAR-2/antagonists & inhibitors , Receptors, Proteinase-Activated/antagonists & inhibitors , Airway Remodeling/drug effects
4.
Toxicol Appl Pharmacol ; 369: 30-38, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30763598

ABSTRACT

Despite all the development of modern medicine, around 100 compounds derived from natural products were undergoing clinical trials only at the end of 2013. Among these natural substances in clinical trials, we found the resveratrol (RES), a pharmacological multi-target drug. RES analgesic properties have been demonstrated, although the bases of these mechanisms have not been fully elucidated. The aim of this study was to evaluate the involvement of opioid and cannabinoid systems in RES-induced peripheral antinociception. Paw withdrawal method was used and hyperalgesia was induced by carrageenan (200 µg/paw). All drugs were given by intraplantar injection in male Swiss mice (n = 5). RES (100 µg/paw) administered in the right hind paw induced local antinociception that was antagonized by naloxone, non-selective opioid receptor antagonist, and clocinnamox, µOR selective antagonist. Naltrindole and nor-binaltorfimine, selective antagonists for δOR and kOR, respectively, did not reverse RES-induced peripheral antinociception. CB1R antagonist AM251, but not CB2R antagonist AM630, antagonized RES-induced peripheral antinociception. Peripheral antinociception of RES intermediate-dose (50 µg/paw) was increased by: (i) bestatin, inhibitor of endogenous opioid degradation involved-enzymes; (ii) MAFP, inhibitor of anandamide amidase; (iii) JZL184, inhibitor of 2-arachidonoylglycerol degradation involved-enzyme; (iv) VDM11, endocannabinoid reuptake inhibitor. Acute and peripheral administration of RES failed to affect the amount of µOR, CB1R and CB2R. Experimental data suggest that RES induces peripheral antinociception through µOR and CB1R activation by endogenous opioid and endocannabinoid releasing.


Subject(s)
Analgesics/pharmacology , Endocannabinoids/metabolism , Hyperalgesia/prevention & control , Nociceptive Pain/prevention & control , Opioid Peptides/metabolism , Receptor, Cannabinoid, CB1/agonists , Receptors, Opioid, mu/agonists , Resveratrol/pharmacology , Animals , Behavior, Animal/drug effects , Cannabinoid Receptor Antagonists/pharmacology , Carrageenan , Disease Models, Animal , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Hyperalgesia/psychology , Male , Mice , Narcotic Antagonists/pharmacology , Nociceptive Pain/chemically induced , Nociceptive Pain/metabolism , Nociceptive Pain/psychology , Receptor, Cannabinoid, CB1/metabolism , Receptors, Opioid, mu/metabolism , Signal Transduction
5.
Planta Med ; 83(3-04): 261-267, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27574895

ABSTRACT

Peltatoside is a natural compound isolated from leaves of Annona crassiflora Mart., a plant widely used in folk medicine. This substance is an analogue of quercetin, a flavonoid extensively studied because of its diverse biological activities, including analgesic effects. Besides, a previous study suggested, by computer structure analyses, a possible quercetin-CB1 cannabinoid receptor interaction. Thus, the aim of this work was to assess the antinociceptive effect of peltatoside and analyze the cannabinoid system involvement in this action. The mouse paw pressure test was used and hyperalgesia was induced by intraplantar injection of carrageenan (200 µg/paw). All used drugs were administered by intraplantar administration in Swiss male mice (n = 6). Peltatoside (100 µg/paw) elicited a local inhibition of hyperalgesia. The peripheral antinociceptive action of peltatoside was antagonized by the CB1 cannabinoid antagonist AM251 (160 µg/paw), but not by CB2 cannabinoid antagonist AM630 (100 µg/paw). In order to assess the role of endocannabinoids in this peripheral antinociceptive effect, we used (i) [5Z,8Z,11Z,14Z]-5,8,11,14-eicosatetraenyl-methyl ester phosphonofluoridic acid, an inhibitor of anandamide amidase; (ii) JZL184, an inhibitor for monoacylglycerol lipase, the primary enzyme responsible for degrading the endocannabinoid 2-arachidonoylglycerol; and (iii) VDM11, an endocannabinoid reuptake inhibitor. MAFP, JZL184, and VDM11 did not induce antinociception, respectively, at the doses 0.5, 3.8, and 2.5 µg/paw, however, these three drugs were able to potentiate the peripheral antinociceptive effect of peltatoside at an intermediary dose (50 µg/paw). Our results suggest that this natural substance is capable of inducing analgesia through the activation of peripheral CB1 receptors, involving endocannabinoids in this process.


Subject(s)
Analgesics/pharmacology , Cannabinoids/metabolism , Glycosides/pharmacology , Quercetin/analogs & derivatives , Amidohydrolases/metabolism , Analgesics/chemistry , Analgesics/isolation & purification , Animals , Annona/chemistry , Benzodioxoles/administration & dosage , Benzodioxoles/pharmacology , Cannabinoid Receptor Antagonists/pharmacology , Carrageenan/antagonists & inhibitors , Carrageenan/pharmacology , Dose-Response Relationship, Drug , Endocannabinoids/metabolism , Glycosides/antagonists & inhibitors , Glycosides/chemistry , Glycosides/isolation & purification , Hyperalgesia/drug therapy , Male , Mice , Monoacylglycerol Lipases/drug effects , Pain Measurement/drug effects , Piperidines/administration & dosage , Piperidines/pharmacology , Plant Extracts/pharmacology , Pyrazoles/pharmacology , Quercetin/antagonists & inhibitors , Quercetin/chemistry , Quercetin/isolation & purification , Quercetin/pharmacology , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Receptor, Cannabinoid, CB2/metabolism
6.
Pharmacol Rep ; 68(6): 1095-1101, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27573715

ABSTRACT

INTRODUCTION: This study was conducted with the aim of evaluating whether electroacupuncture (EA) at acupoint St36 could produce antinociception through the activation of an endocannabinoid mechanism. METHODS: Male Wistar rats were divided into experimental groups. Heat was applied to the faces of rats, and the latency to withdraw the face was measured. Furthermore, the influence of electrical stimulation (100HzP) of acupoint St36, at a 0.5mA intensity, was investigated in the facial withdrawal threshold. RESULTS: The EA produced antinociception, which lasted for 180min. This effect was antagonized by the pre-injection of AM 251, a CB1 cannabinoid receptor antagonist, but not by AM 630, a CB2 cannabinoid receptor antagonist. Additionally, pretreatment with an endocannabinoid metabolizing enzyme inhibitor (MAFP) and an anandamide reuptake inhibitor (VDM11) prolonged and intensified the antinociceptive effect produced by EA. CONCLUSION: This study demonstrated for the first time that the CB1 cannabinoid receptor participates in the antinociceptive effect induced by EA.


Subject(s)
Acupuncture Points , Electroacupuncture/methods , Endocannabinoids/metabolism , Facial Pain/metabolism , Facial Pain/therapy , Pain Measurement/methods , Animals , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Agonists/therapeutic use , Cannabinoid Receptor Antagonists/pharmacology , Cannabinoid Receptor Antagonists/therapeutic use , Dose-Response Relationship, Drug , Indoles/pharmacology , Indoles/therapeutic use , Male , Pain Measurement/drug effects , Piperidines/pharmacology , Piperidines/therapeutic use , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Rats , Rats, Wistar
7.
Planta Med ; 82(1-2): 106-12, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26460671

ABSTRACT

Cafestol and kahweol are diterpenes found only in the non-saponified lipid fraction of coffee. They are released during boiling and retained in the filtration process. Previous studies have shown peripheral antinociception induced by endogenous opioid peptides released by these diterpenes. Considering that the activation of the opioid system leads to a noradrenaline release, the aim of this study was to verify the participation of the noradrenergic system in the peripheral antinociception induced by cafestol and kahweol. Hyperalgesia was induced by an intraplantar injection of prostaglandin E2 (2 µg). Cafestol or kahweol (80 µg/paw) were administered locally into the right hindpaw alone, and after the agents α 2-adrenoceptor antagonist yohimbine (5, 10 and 20 µg/paw), α 2 A-adrenoceptor antagonist BRL 44 408 (40 µg/paw), α 2B-adrenoceptor antagonist imiloxan (40 µg/paw), α 2 C-adrenoceptor antagonist rauwolscine (10, 15 and 20 µg/paw), α 2D-adrenoceptor antagonist RX 821 002 (40 µg/paw), α 1-adrenoceptor antagonist prazosin (0.5, 1 and 2 µg/paw), or ß-adrenoceptor antagonist propranolol (150, 300 and 600 ng/paw), respectively. Noradrenaline reuptake inhibitor reboxetine (30 µg/paw) was administered prior to cafestol or kahweol low dose (40 µg/paw) and guanetidine 3 days prior to the experiment (30 mg/kg, once a day), depleting the noradrenaline storage. Intraplantar injection of cafestol or kahweol (80 µg/paw) induced a peripheral antinociception against hyperalgesia induced by PGE2. This effect was reversed by intraplantar injections of yohimbine, rauwolscine, prazosin and propranolol. Reboxetine injection intensified the antinociceptive effect of cafestol or kahweol low-dose, and guanethidine reversed almost 70 % of the cafestol or kahweol-induced peripheral antinociception. This study gives evidence that the noradrenergic system participates in cafestol and kahweol-induced peripheral antinociception with the release of endogenous noradrenaline.


Subject(s)
Analgesics/pharmacology , Coffee/chemistry , Diterpenes/pharmacology , Receptors, Adrenergic/drug effects , Animals , Diterpenes/chemistry , Male , Molecular Structure , Rats , Rats, Wistar , Receptors, Adrenergic/metabolism , Receptors, Adrenergic, alpha-2/drug effects , Receptors, Adrenergic, alpha-2/metabolism
8.
J Nat Med ; 69(4): 487-93, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25894075

ABSTRACT

We aimed to study the antinociceptive effects of myricetin 3-O-ß-galactoside (Mi), a substance isolated from the hydroalcoholic extract of Davilla elliptica. This study examined male Swiss mice, inducible nitric oxide synthase C57B16/J knockout mice (iNOS(-/-)), and their corresponding wild type (WT). Formalin and tail-flick tests were used to evaluate the nociceptive threshold, and the carrageenan-induced paw edema test was used as a model for inflammation. The following drugs were administered to investigate the involvement of the nitrergic and opioidergic systems: L-NAME, a nonspecific nitric oxide synthase (NOS) inhibitor; L-arginine (L-Arg), a precursor for the synthesis of nitric oxide (NO); D-arginine (D-Arg), an inactive isomer for the synthesis of NO; aminoguanidine (Am), an inducible nitric oxide synthase (iNOS) inhibitor; and naloxone, a nonselective antagonist of opioid receptors. The results showed that oral pretreatment with Mi caused a dose-dependent inhibition of the inflammatory phase of the formalin test and did not alter motor performance. Intraperitoneal injection of L-NAME caused a reduction in the licking time during the second phase of the formalin test. The administration of L-Arg (but not D-Arg) reversed the antinociceptive effect of L-NAME. Furthermore, pre-administration of aminoguanidine potentiated the antinociceptive effect. Mi did not cause an antinociceptive effect in iNOS knockouts and led to a reduction in the nitrite concentration in the paws of mice. Carrageenan-induced paw edema was reduced in Swiss mice and WT mice when compared to iNOS(-/-) mice. Pre-administration of naloxone (NLX) did not reverse the antinociceptive effect of Mi, excluding the opioidergic system as a mediator of the antinociceptive effect. Thus, the results suggest that the antinociceptive and anti-inflammatory effects of myricetin 3-O-ß-galactoside are related to peripheral inhibition of nitric oxide synthesis, mainly iNOS.


Subject(s)
Analgesics/metabolism , Anti-Inflammatory Agents/metabolism , Edema/drug therapy , Galactosides/chemistry , Nitric Oxide/chemistry , Plants, Medicinal/chemistry , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
9.
Planta Med ; 80(17): 1615-21, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25338214

ABSTRACT

Plants belonging to the genus Maytenus are routinely used in folk medicine for the treatment of pain diseases. Our previous phytochemical study of the roots of Maytenus imbricata resulted in the isolation and characterization of tingenone, a pentacyclic triterpene. Natural triterpenoids are of growing interest because they have several biological activities, including analgesic properties. The present study assessed the involvement of the opiodergic pathway in the tingenone-induced antinociceptive effect against hyperalgesia induced by prostaglandin E2 (2 µg) in the peripheral pathway. We evaluated the effect of several antagonists to opioid receptors using the mouse paw pressure test. Tingenone administered into the right hind paw induced a local antinociceptive effect that was antagonized by naloxone, a nonselective antagonist to opioid receptors. Clocinnamox, naltrindole, and nor-binaltorphimine are selective antagonists to µ, δ, and κ receptors, respectively, which reverted the peripheral antinociception induced by tingenone. Bestatine acts as an inhibitor of aminopeptidase, an enzyme that degrades endogenous opioid peptides, and was shown to intensify the antinociceptive effect of tingenone. The results suggest that the opioidergic system participates in the peripheral antinociception induced by tingenone.


Subject(s)
Analgesics, Opioid/pharmacology , Analgesics/pharmacology , Maytenus/chemistry , Triterpenes/pharmacology , Analgesics/adverse effects , Analgesics/isolation & purification , Analgesics, Opioid/adverse effects , Analgesics, Opioid/isolation & purification , Animals , Hyperalgesia/drug therapy , Male , Mice , Triterpenes/adverse effects , Triterpenes/isolation & purification
10.
J Ethnopharmacol ; 151(1): 722-8, 2014.
Article in English | MEDLINE | ID: mdl-24309496

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Pyrostegia venusta is used in traditional Brazilian medicine as a general tonic to treat any inflammatory disease. Several studies have demonstrated that medicinal plants constitute a therapeutic approach for the treatment of obesity-related metabolic and inflammatory disarrangement. Accordingly, we investigated the effects of hydroethanolic extract of Pyrostegia venusta flowers (PvHE) supplementation for the treatment of inflammatory and metabolic dysfunction induced by high-refined-carbohydrate (HC) diet. MATERIAL AND METHODS: The BALB/c mice were fed chow or HC diet for 8 weeks. Part of these animals was fed with HC diet supplemented with PvHE on the 9th week until the 12th week. At the end of the dietary intervention, animals were sacrificed. RESULTS: We observed that PvHE decreased adiposity and adipocyte area; improved glucose intolerance; reduced serum triacylglycerol levels and systemic inflammatory cells; and also reduced some inflammatory mediators levels in adipose tissue and liver. CONCLUSION: The results showed that PvHE has beneficial effects and may treat inflammatory and metabolic dysfunction induced by HC diet, that are associated to a negative modulation of the inflammatory process at systemic and local levels.


Subject(s)
Bignoniaceae/chemistry , Dietary Carbohydrates/adverse effects , Inflammation/drug therapy , Plant Extracts/pharmacology , Animals , Dietary Carbohydrates/administration & dosage , Female , Glucose Tolerance Test , Mice , Mice, Inbred BALB C , Plant Extracts/chemistry
11.
Rev. odontol. UNESP ; 28(1): 161-5, jan.-jun. 1999. ilus
Article in Portuguese | LILACS, BBO - Dentistry | ID: lil-271345

ABSTRACT

Neste trabalho testamos os efeitos antiinflamatórios do extrato hidroalcoólico de folhas de Ipomoea batatas. O modelo experimental de inflamaçäo utilizado foi de edema de pata de ratos induzido pelo composto 48/80. Apesar de ser comumente utilizada na medicina popular, esse tipo de extrato näo apresentou nenhum efeito antiinflamatório no modelo experimental utilizado


Subject(s)
Animals , Rats , Solanaceae/therapeutic use , Homeopathy , Medicine, Traditional
12.
Rev. odontol. UNESP ; 26(2): 297-305, jul.-dez. 1997. ilus
Article in Portuguese | LILACS, BBO - Dentistry | ID: lil-224069

ABSTRACT

O presente trabalho teve como finalidade analisar o efeito de um inibidor do óxido nítrico no rim de ratos normais e diabéticos. Observamos que L-NG-nitro arginina metil éster (L-NAME), além de causar hipertensäo arterial, näo teve nenhum efeito na morfologia renal e, também näo atenuou a diabetes pela inibiçäo da produçäo do NO. O conhecimento sobre a produçäo de NO por ilhotas de Langerhans ainda precisa ser melhor estudado, porém este é um modelo eficaz para estudo de hipertensäo


Subject(s)
Animals , Rats , Glycosuria, Renal , Nitric Oxide , NG-Nitroarginine Methyl Ester
SELECTION OF CITATIONS
SEARCH DETAIL
...