Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nat Cardiovasc Res ; 2(4): 383-398, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37974970

ABSTRACT

Cardiomyocyte proliferation and dedifferentiation have fueled the field of regenerative cardiology in recent years, whereas the reverse process of redifferentiation remains largely unexplored. Redifferentiation is characterized by the restoration of function lost during dedifferentiation. Previously, we showed that ERBB2-mediated heart regeneration has these two distinct phases: transient dedifferentiation and redifferentiation. Here we survey the temporal transcriptomic and proteomic landscape of dedifferentiation-redifferentiation in adult mouse hearts and reveal that well-characterized dedifferentiation features largely return to normal, although elements of residual dedifferentiation remain, even after the contractile function is restored. These hearts appear rejuvenated and show robust resistance to ischemic injury, even 5 months after redifferentiation initiation. Cardiomyocyte redifferentiation is driven by negative feedback signaling and requires LATS1/2 Hippo pathway activity. Our data reveal the importance of cardiomyocyte redifferentiation in functional restoration during regeneration but also protection against future insult, in what could lead to a potential prophylactic treatment against ischemic heart disease for at-risk patients.

2.
Methods Mol Biol ; 2158: 3-21, 2021.
Article in English | MEDLINE | ID: mdl-32857361

ABSTRACT

The discovery of endogenous regenerative potential of the heart in zebrafish and neonatal mice has shifted the cardiac regenerative field towards the utilization of intrinsic regenerative mechanisms in the mammalian heart. The goal of these studies is to understand, and eventually apply, the neonatal regenerative mechanisms into adulthood. To facilitate these studies, the last two decades have seen advancements in the development of injury models in adult mice representative of the diversity of cardiac diseases. Here, we provide an overview for a selection of the most common cardiac ischemic injury models and describe a set of methods used to accurately analyze and quantify cardiac outcomes. Importantly, a comprehensive understanding of cardiac regeneration and repair requires a combination of multiple functional, histological, and molecular analyses.


Subject(s)
Heart/physiopathology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Regeneration , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR
3.
Pigment Cell Melanoma Res ; 31(5): 604-613, 2018 09.
Article in English | MEDLINE | ID: mdl-29570931

ABSTRACT

Uveal melanoma (UM) is the most common primary intraocular cancer and has a high incidence of metastasis, which lacks any effective treatment. Here, we present zebrafish models of UM, which are driven by melanocyte-specific expression of activating GNAQ or GNA11 alleles, GNAQ/11Q209L , the predominant initiating mutations for human UM. When combined with mutant tp53, GNAQ/11Q209L transgenics develop various melanocytic tumors, including UM, with near complete penetrance. These tumors display nuclear YAP localization and thus phenocopy human UM. We show that GNAQ/11Q209L expression induces profound melanocyte defects independent of tp53 mutation, which are apparent within 3 days of development. First, increases in melanocyte number, melanin content, and subcellular melanin distribution result in hyperpigmentation. Additionally, altered melanocyte migration, survival properties, and evasion of normal boundary cues lead to aberrant melanocyte localization and stripe patterning. Collectively, these data show that GNAQ/11Q209L is sufficient to induce numerous protumorigenic changes within melanocytes.


Subject(s)
GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits/genetics , Hyperpigmentation/pathology , Melanocytes/pathology , Melanoma/pathology , Mutation , Precancerous Conditions/pathology , Uveal Neoplasms/pathology , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/growth & development , Cells, Cultured , Humans , Hyperpigmentation/genetics , Melanocytes/metabolism , Melanoma/genetics , Precancerous Conditions/genetics , Uveal Neoplasms/genetics , Zebrafish/genetics , Zebrafish/growth & development
4.
Cell Cycle ; 15(5): 678-88, 2016.
Article in English | MEDLINE | ID: mdl-27104747

ABSTRACT

CDK10/CycM is a protein kinase deficient in STAR (toe Syndactyly, Telecanthus and Anogenital and Renal malformations) syndrome, which results from mutations in the X-linked FAM58A gene encoding Cyclin M. The biological functions of CDK10/CycM and etiology of STAR syndrome are poorly understood. Here, we report that deficiency of CDK10/Cyclin M promotes assembly and elongation of primary cilia. We establish that this reflects a key role for CDK10/Cyclin M in regulation of actin network organization, which is known to govern ciliogenesis. In an unbiased screen, we identified the RhoA-associated kinase PKN2 as a CDK10/CycM phosphorylation substrate. We establish that PKN2 is a bone fide regulator of ciliogenesis, acting in a similar manner to CDK10/CycM. We discovered that CDK10/Cyclin M binds and phosphorylates PKN2 on threonines 121 and 124, within PKN2's core RhoA-binding domain. Furthermore, we demonstrate that deficiencies in CDK10/CycM or PKN2, or expression of a non-phosphorylatable version of PKN2, destabilize both the RhoA protein and the actin network architecture. Importantly, we established that ectopic expression of RhoA is sufficient to override the induction of ciliogenesis resulting from CDK10/CycM knockdown, indicating that RhoA regulation is critical for CDK10/CycM's negative effect on ciliogenesis. Finally, we show that kidney sections from a STAR patient display dilated renal tubules and abnormal, elongated cilia. Altogether, these results reveal CDK10/CycM as a key regulator of actin dynamics and a suppressor of ciliogenesis through phosphorylation of PKN2 and promotion of RhoA signaling. Moreover, they suggest that STAR syndrome is a ciliopathy.


Subject(s)
Actins/metabolism , Anal Canal/abnormalities , Cilia/physiology , Cyclin-Dependent Kinases/physiology , Hypertelorism/enzymology , Kidney/abnormalities , Syndactyly/enzymology , Toes/abnormalities , Urogenital Abnormalities/enzymology , Actins/ultrastructure , Anal Canal/enzymology , Cell Line , Enzyme Stability , Humans , Hypertelorism/genetics , Kidney/enzymology , Phosphorylation , Protein Kinase C/metabolism , Protein Processing, Post-Translational , Signal Transduction , Syndactyly/genetics , Urogenital Abnormalities/genetics , rhoA GTP-Binding Protein/metabolism
5.
J Cell Sci ; 123(Pt 5): 795-805, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20144993

ABSTRACT

Centriole duplication is of crucial importance during both mitotic and male meiotic divisions, but it is currently not known whether this process is regulated differently during the two modes of division. In Caenorhabditis elegans, the kinase ZYG-1 plays an essential role in both mitotic and meiotic centriole duplication. We have found that the C-terminus of ZYG-1 is necessary and sufficient for targeting to centrosomes and is important for differentiating mitotic and meiotic centriole duplication. Small truncations of the C-terminus dramatically lower the level of ZYG-1 at mitotic centrosomes but have little effect on the level of ZYG-1 at meiotic centrosomes. Interestingly, truncation of ZYG-1 blocks centrosome duplication in the mitotic cycle but leads to centrosome amplification in the meiotic cycle. Meiotic centriole amplification appears to result from the overduplication of centrioles during meiosis I and leads to the formation of multipolar meiosis II spindles. The extra centrioles also disrupt spermatogenesis by inducing the formation of supernumerary fertilization-competent spermatids that contain abnormal numbers of chromosomes and centrioles. Our data reveal differences in the regulation of mitotic and meiotic centrosome duplication, particularly with regard to ZYG-1 activity, and reveal an important role for centrosomes in spermatid formation.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Centrioles/metabolism , Meiosis/physiology , Mitosis/physiology , Protein Kinases/metabolism , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Centrioles/genetics , Centrosome/metabolism , Immunoblotting , Male , Meiosis/genetics , Microscopy, Confocal , Microscopy, Electron , Mitosis/genetics , Protein Kinases/genetics , Spermatocytes/cytology , Spermatocytes/metabolism
6.
Plant Physiol ; 151(1): 241-52, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19571304

ABSTRACT

Plants have evolved a range of cellular responses to maintain developmental homeostasis and to survive over a range of temperatures. Here, we describe the in vivo and in vitro functions of BOBBER1 (BOB1), a NudC domain containing Arabidopsis (Arabidopsis thaliana) small heat shock protein. BOB1 is an essential gene required for the normal partitioning and patterning of the apical domain of the Arabidopsis embryo. Because BOB1 loss-of-function mutants are embryo lethal, we used a partial loss-of-function allele (bob1-3) to demonstrate that BOB1 is required for organismal thermotolerance and postembryonic development. Recombinant BOB1 protein functions as a molecular chaperone and prevents the aggregation of a model protein substrate in vitro. In plants, BOB1 is cytoplasmic at basal temperatures, but forms heat shock granules containing canonical small heat shock proteins at high temperatures. In addition to thermotolerance defects, bob1-3 exhibits pleiotropic development defects during all phases of development. bob1-3 phenotypes include decreased rates of shoot and root growth as well as patterning defects in leaves, flowers, and inflorescence meristems. Most eukaryotic chaperones play important roles in protein folding either during protein synthesis or during cellular responses to denaturing stress. Our results provide, to our knowledge, the first evidence of a plant small heat shock protein that has both developmental and thermotolerance functions and may play a role in both of these folding networks.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Heat-Shock Proteins/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Flowers/genetics , Flowers/physiology , Flowers/ultrastructure , Gene Expression Regulation, Plant/physiology , Heat-Shock Proteins/genetics , Hot Temperature , Meristem/genetics , Meristem/physiology , Molecular Sequence Data , Mutation , Protein Denaturation
SELECTION OF CITATIONS
SEARCH DETAIL
...