Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 25(44): 7947-7952, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37284784

ABSTRACT

We describe a two-step process for the synthesis of substituted bicyclo[1.1.0]butanes. A photo-Hunsdiecker reaction generates iodo-bicyclo[1.1.1]pentanes under metal-free conditions at room temperature. These intermediates react with nitrogen and sulfur nucleophiles to afford substituted bicyclo[1.1.0]butane products.

2.
Bioorg Med Chem Lett ; 27(23): 5267-5271, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29102228

ABSTRACT

Macrocyclic pyrrolobenzodiazepine dimers were designed and evaluated for use as antibody-drug conjugate payloads. Initial structure-activity exploration established that macrocyclization could increase the potency of PBD dimers compared with non-macrocyclic analogs. Further optimization overcame activity-limiting solubility issues, leading to compounds with highly potent (picomolar) activity against several cancer cell lines. High levels of in vitro potency and specificity were demonstrated with an anti-mesothelin conjugate.


Subject(s)
Antibodies/metabolism , Antineoplastic Agents/pharmacology , Benzodiazepines/pharmacology , Macrocyclic Compounds/pharmacology , Pyrroles/pharmacology , Antibodies/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzodiazepines/chemical synthesis , Benzodiazepines/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dimerization , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Molecular Structure , Pyrroles/chemical synthesis , Pyrroles/chemistry , Solubility , Structure-Activity Relationship
3.
J Med Chem ; 58(3): 1556-62, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25584393

ABSTRACT

The prominent role of IAPs in controlling cell death and their overexpression in a variety of cancers has prompted the development of IAP antagonists as potential antitumor therapies. We describe the identification of a series of heterodimeric antagonists with highly potent antiproliferative activities in cIAP- and XIAP-dependent cell lines. Compounds 15 and 17 further demonstrate curative efficacy in human melanoma and lung cancer xenograft models and are promising candidates for advanced studies.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Neoplasms, Experimental/drug therapy , Proline/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mice , Molecular Structure , Neoplasms, Experimental/pathology , Proline/chemical synthesis , Proline/chemistry , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 24(21): 5022-9, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25278234

ABSTRACT

Bivalent heterodimeric IAP antagonists that incorporate (R)-tetrahydroisoquinoline in the P3' subunit show high affinity for the BIR2 domain and demonstrated potent IAP inhibitory activities in biochemical and cellular assays. Potent in vivo efficacy was observed in a variety of human tumor xenograft models. The bivalent heterodimeric molecule 3 with a P3-P3' benzamide linker induced pharmacodynamic markers of apoptosis and was efficacious when administered intravenously at a dose of 1mg/kg to mice harboring A875 human melanoma tumors. Analog 5, with a polyamine group incorporated at the P2' thiovaline side chain exhibited antiproliferative activity against the P-gp expressing HCT116/VM46 cell line.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Melanoma/drug therapy , Pancreatic Neoplasms/drug therapy , Tetrahydroisoquinolines/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Binding Sites , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Models, Molecular , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Drug Discov Today ; 19(7): 869-81, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24239727

ABSTRACT

Antibody-drug conjugates (ADCs) aim to take advantage of the specificity of monoclonal antibodies (mAbs) to deliver potent cytotoxic drugs selectively to antigen-expressing tumor cells. Despite the simple concept, various parameters must be considered when designing optimal ADCs, such as selection of the appropriate antigen target and conjugation method. Each component of the ADC (the antibody, linker and drug) must also be optimized to fully realize the goal of a targeted therapy with improved efficacy and tolerability. Advancements over the past several decades have led to a new generation of ADCs comprising non-immunogenic mAbs, linkers with balanced stability and highly potent cytotoxic agents. Although challenges remain, recent clinical success has generated intense interest in this therapeutic class.


Subject(s)
Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/immunology , Antineoplastic Agents/immunology , Forecasting , Humans , Neoplasms/drug therapy , Neoplasms/immunology
6.
Bioorg Med Chem Lett ; 22(12): 3946-50, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22608961

ABSTRACT

A series of phenylacylsulfonamides has been prepared as antagonists of Bcl-2/Bcl-xL. In addition to potent binding affinities for both Bcl-2 and Bcl-xL, these compounds were shown to induce classical markers of apoptosis in isolated mitochondria. Overall weak cellular potency was improved by the incorporation of polar functionality resulting in compounds with moderate antiproliferative activity.


Subject(s)
Antineoplastic Agents/chemical synthesis , Mitochondria/drug effects , Sulfonamides/chemical synthesis , bcl-2-Associated X Protein/antagonists & inhibitors , bcl-X Protein/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Crystallography, X-Ray , Cytochromes c/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Mitochondria/metabolism , Models, Molecular , Sulfonamides/pharmacology , bcl-2-Associated X Protein/chemistry , bcl-X Protein/chemistry
7.
Bioorg Med Chem Lett ; 22(12): 3951-6, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22608393

ABSTRACT

5-Butyl-1,4-diphenyl pyrazole and 2-amino-5-chloro pyrimidine acylsulfonamides were developed as potent dual antagonists of Bcl-2 and Bcl-xL. Compounds were optimized for binding to the I88, L92, I95, and F99 pockets normally occupied by pro-apoptotic protein Bim. An X-ray crystal structure confirmed the proposed binding mode. Observation of cytochrome c release from isolated mitochondria in MV-411 cells provides further evidence of target inhibition. Compounds demonstrated submicromolar antiproliferative activity in Bcl-2/Bcl-xL dependent cell lines.


Subject(s)
Antineoplastic Agents/chemical synthesis , Pyrazoles/chemical synthesis , Pyrimidines/chemical synthesis , Sulfonamides/chemical synthesis , bcl-2-Associated X Protein/antagonists & inhibitors , bcl-X Protein/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11 , Binding Sites , Cell Line, Tumor , Crystallography, X-Ray , Cytochromes c/metabolism , Humans , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Models, Molecular , Protein Binding , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/metabolism , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Sulfonamides/pharmacology , bcl-2-Associated X Protein/chemistry , bcl-2-Associated X Protein/metabolism , bcl-X Protein/chemistry , bcl-X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...