Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 14(5): 2764-71, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24712578

ABSTRACT

Solution processable semiconducting polymers with excellent film forming capacity and mechanical flexibility are considered among the most progressive alternatives to conventional inorganic semiconductors. However, the random packing of polymer chains and the disorder of the polymer matrix typically result in low charge transport mobilities (10(-5)-10(-2) cm(2) V(-1) s(-1)). These low mobilities compromise their performance and development. Here, we present a strategy, by utilizing capillary action, to mediate polymer chain self-assembly and unidirectional alignment on nanogrooved substrates. We designed a sandwich tunnel system separated by functionalized glass spacers to induce capillary action for controlling the polymer nanostructure, crystallinity, and charge transport. Using capillary action, we demonstrate saturation mobilities with average values of 21.3 and 18.5 cm(2) V(-1 )s(-1) on two different semiconducting polymers at a transistor channel length of 80 µm. These values are limited by the source-drain contact resistance, Rc. Using a longer channel length of 140 µm where the contact resistance is less important, we measured µh = 36.3 cm(2) v(-1) s(-1). Extrapolating to infinite channel length where Rc is unimportant, the intrinsic mobility for poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiadiazolo[3,4-c]pyridine] (Mn = 140 kDa) at this degree of chain alignment and structural order is µh ≈ 47 cm(2 )v(-1) s(-1). Our results create a promising pathway toward high performance, solution processable, and low-cost organic electronics.

2.
Adv Mater ; 26(19): 2993-8, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24504475

ABSTRACT

A record high OFET hole mobility, as high as 23.7 cm(2) /Vs, is achieved in macroscopic aligned semiconducting polymers. The high mobility is insensitive to the polymer molecular weight. Polymer chains are aligned along the fiber to facilitate intrachain charge transport.

3.
Adv Mater ; 25(44): 6380-4, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24002890

ABSTRACT

Solvent additive processing can lead to drastic improvements in the power conversion efficiency (PCE) in solution processable small molecule (SPSM) bulk heterojunction solar cells. In situ grazing incidence wide-angle X-ray scattering is used to investigate the kinetics of crystallite formation during and shortly after spin casting. The additive is shown to have a complex effect on structural evolution invoking polymorphism and enhanced crystalline quality of the donor SPSM.


Subject(s)
Solar Energy , Solvents/chemistry , Crystallization , Glass/chemistry , Polystyrenes/chemistry , Thiophenes/chemistry , Tin Compounds/chemistry
4.
J Am Chem Soc ; 134(51): 20609-12, 2012 Dec 26.
Article in English | MEDLINE | ID: mdl-23214922

ABSTRACT

The influence of extending the molecular length of donor-acceptor chromophores on properties relevant to organic optoelectronic devices has been studied by using two new narrow-band-gap systems. Most significantly, we find that the higher molecular weight systems exhibit higher thermal stabilities (beyond 200 °C) when introduced into field effect transistor devices. It is also possible to fabricate bulk heterojunction solar cells using PC(61)BM with power conversion efficiencies >6%. These high values are not heavily influenced by the blend composition and are achieved without the influence of solvent additives or postdeposition thermal annealing.

5.
Nano Lett ; 12(12): 6353-7, 2012 Dec 12.
Article in English | MEDLINE | ID: mdl-23171058

ABSTRACT

Field-effect transistors fabricated from semiconducting conjugated polymers are candidates for flexible and low-cost electronic applications. Here, we demonstrate that the mobility of high molecular weight (300 kDa) regioregular, poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiadiazolo[3,4-c]pyridine] can be significantly improved by introducing long-range orientation of the polymer chains. By annealing for short periods, hole mobilities of 6.7 cm(2)/(V s) have been demonstrated. The transport is anisotropic, with a higher mobility (approximately 6:1) parallel to the polymer backbone than that perpendicular to the polymer backbone.

6.
J Am Chem Soc ; 134(40): 16597-606, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-22950622

ABSTRACT

We examine the correlations of the dipole moment and conformational stability to the self-assembly and solar cell performance within a series of isomorphic, solution-processable molecules. These charge-transfer chromophores are described by a D(1)-A-D-A-D(1) structure comprising electron-rich 2-hexylbithiophene and 3,3'-di-2-ethylhexylsilylene-2,2'-bithiophene moieties as the donor units D(1) and D, respectively. The building blocks 2,1,3-benzothiadiazole (BT) and [1,2,5]thiadiazolo[3,4-c]pyridine (PT) were used as the electron-deficient acceptor units A. Using a combination of UV-visible spectroscopy, field-effect transistors, solar cell devices, grazing incident wide-angle X-ray scattering, and transmission electron microscopy, three PT-containing compounds (1-3) with varying regiochemistry and symmetry, together with the BT-based compound 5,5'-bis{(4-(7-hexylthiophen-2-yl)thiophen-2-yl)-[1,2,5]thiadiazolobenzene}-3,3'-di-2-ethylhexylsilylene-2,2'-bithiophene (4), are compared and contrasted in solution, in thin films, and as blends with the electron acceptor [6,6]-phenyl-C(70)-butyric acid methyl ester. The molecules with symmetric orientations of the PT acceptor, 1 and 2, yield highly ordered blended thin films. The best films, processed with the solvent additive 1,8-diiodooctane, show donor "crystallite" length scales on the order of 15-35 nm and photovoltaic power conversion efficiencies (PCEs) of 7.0 and 5.6%, respectively. Compound 3, with an unsymmetrical orientation of PT heterocycles, shows subtle differences in the crystallization behavior and a best PCE of 3.2%. In contrast, blends of the BT-containing donor 4 are highly disordered and give PCEs below 0.2%. We speculate that the differences in self-assembly arise from the strong influence of the BT acceptor and its orientation on the net dipole moment and geometric description of the chromophore.

7.
J Am Chem Soc ; 133(46): 18538-41, 2011 Nov 23.
Article in English | MEDLINE | ID: mdl-21936564

ABSTRACT

π-Conjugated, narrow band gap copolymers containing pyridal[2,1,3]thiadiazole (PT) were synthesized via starting materials that prevent random incorporation of the PT heterocycles relative to the backbone vector. Two regioregular structures could be obtained: in one the PTs are oriented in the same direction, and in the other the orientation of the PTs alternates every other repeat unit. Compared to their regiorandom counterparts, the regioregular polymers exhibit a 2 orders of magnitude increase of the hole mobilites, from 0.005 to 0.6 cm(2) V(-1) s(-1), as determined by field-effect transistor measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...