Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sports (Basel) ; 12(1)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38251292

ABSTRACT

The primary purpose of the current investigation was to perform an intensity distribution analysis of a collegiate cross-country (CC) competition, with a secondary purpose to compare race times (RT) with modeled performance times (MPT). Participants completed an incremental treadmill test to determine gas exchange threshold (GET), while the three-minute all-out test was conducted on a 400 m outdoor track to determine critical velocity (CV) and D prime (D'). GET and CV were used as physiological markers for the intensity zones based on heart rate (HR) and running velocity (RV), while CV and D' were used to determine modeled performance times. Participants wore a Global Positioning System (GPS) watch and heart rate (HR) monitor during competition races. Statistically, less time was spent in HR Zone 1 (12.1% ± 13.7%) compared to Zones 2 (37.6% ± 30.2%) and 3 (50.3% ± 33.7%), while a statically greater amount of time was spent in RV Zone 2 (75.0% ± 20.7%) compared to Zones 1 (8.4% ± 14.0%) and 3 (16.7% ± 19.1%). RTs (1499.5 ± 248.5 seconds (s)) were statistically slower compared to MPTs (1359.6 ± 192.7 s). The observed differences in time spent in each zone are speculated to be related to the influence of environmental conditions on internal metrics and difference in the kinetics of HR and running velocity. Differences in RTs and MPTs are likely due to the MPT equation modeling all-out performance and not considering race strategies.

2.
Sports (Basel) ; 11(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38133105

ABSTRACT

The current investigation compared the acute oxygen consumption (VO2) response of two high-intensity interval exercises (HIIE), fast start (FSHIIE), and steady power (SPHIIE), which matched w prime (W') depletion. Eight cyclists completed an incremental max test and a three-minute all-out test (3MT) to determine maximal oxygen consumption (VO2max), critical power (CP), and W'. HIIE sessions consisted of 3 X 4 min intervals interspersed by 3 min of active recovery, with W' depleted by 60% (W'target) within each working interval. SPHIIE depleted the W'target consistently throughout the 3 min intervals, while FSHIIE depleted the W'target by 50% within the first minute, with the remaining 50% depleted evenly across the remainder of the interval. The paired samples t-test revealed no differences in the percentage of training time spent above 90% of VO2max (PT ≥ 90% VO2max) between SPHIIE and FSHIIE with an average of 25.20% and 26.07%, respectively. Pairwise comparisons indicated a difference between minute 1 peak VO2, minute 2, and minute 3, while no differences were present between minutes 2 and 3. The results suggest that when HIIE formats are matched based on W' expenditure, there are no differences in PT ≥ 90% VO2max or peak VO2 during each interval.

SELECTION OF CITATIONS
SEARCH DETAIL
...