Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biosci Bioeng ; 134(4): 277-287, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35927130

ABSTRACT

Bacteriocin production in lactic acid bacteria (LAB) has always been considered as a highly desirable trait as it enhances the strain's utility in different industrial applications. Bacteriocin producing LAB strains are considered to have higher bacterial fitness as they are able to easily establish themselves into target microbial niche and hence are more effective starter cultures in food fermentation and/or probiotic strains. The rapid advancement in genomic research revealed the true bacteriocin producing capacity of some select novel LAB strains capable of producing multiple bacteriocins which further improves their utility in different application systems. What is common to these novel strains is the remarkable sharing of some elements in the biosynthetic process enabling them to accomplish the extraordinary feat of producing multiple bacteriocins without exhausting its energy. Contrary to the common understanding that biosynthetic enzymes are specific to their cognate bacteriocins, multiple bacteriocin producing strains employ shared biosynthetic elements between their multiple bacteriocins. The quorum-sensing three-component regulatory system, bacteriocin maturation and transport mechanisms are shared among multiple bacteriocins in these strains. Nevertheless, although these novel strains possess enormous application potential, their safety with regards to their potential virulence and pathogenicity needs to be confirmed through comprehensive genotypic characterization. Here, we compile the occurrence of multiple bacteriocin production in some novel LAB strains and highlight specific examples of the unique sharing mechanism of its biosynthetic machinery because a good understanding how these novel strains synthesize their multiple bacteriocins can aid in maximizing their application potential.


Subject(s)
Bacteriocins , Lactobacillales , Probiotics , Bacteria , Bacteriocins/genetics , Lactobacillales/genetics , Quorum Sensing
2.
J Biosci Bioeng ; 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-34756351

ABSTRACT

Enterococcus faecium NKR-5-3 produces multiple-bacteriocins, enterocins NKR-5-3A, B, C, D, and Z (Ent53A, Ent53B, Ent53C, Ent53D, and Ent53Z). However, the biosynthetic mechanisms on how their productions are regulated are yet to be fully understood. In silico analysis revealed putative promoters and terminators in the enterocin NKR-5-3ACDZ gene cluster, and the putative direct repeats (5'-ATTTTAGGATA-3') were conserved upstream of each promoter. Transcriptional analysis by quantitative real-time polymerase chain reaction (PCR) of the biosynthetic genes for the enterocins NKR-5-3 suggested that an inducing peptide (Ent53D) regulates the transcription of the structure genes and corresponding biosynthetic genes of enterocins NKR-5-3, except for Ent53B (a circular bacteriocin), thus consequently regulating their production. Moreover, transcriptional analysis of some knock-out mutants showed that the production of Ent53A, C, D and Z is controlled by a three-component regulatory system (TCS) consisting of Ent53D, EnkR (response regulator), and EnkK (histidine kinase). The production of the circular bacteriocin Ent53B appeared to be independent from this TCS. Nevertheless, disrupting the TCS by deletion of a single component (enkD, enkR and enkK) resulted in a slight increase of enkB transcription and consequently the production of Ent53B, presumably, as an indirect consequence of the increase of available energy to the strain NKR-5-3. Here, we demonstrate the regulatory control of the multiple bacteriocin production of strain NKR-5-3 likely through the TCS consisting of Ent53D, EnkR, and EnkK. The information of the sharing of the regulatory machinery between bacteriocins in strain NKR-5-3 can be useful in its future application such as designing strategies to effectively dispense its multiple bacteriocin arsenal.

3.
Appl Environ Microbiol ; 81(14): 4819-26, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25956765

ABSTRACT

Enterococcus faecalis F4-9 isolated from Egyptian salted-fermented fish produces a novel bacteriocin, termed enterocin F4-9. Enterocin F4-9 was purified from the culture supernatant by three steps, and its molecular mass was determined to be 5,516.6 Da by mass spectrometry. Amino acid and DNA sequencing showed that the propeptide consists of 67 amino acid residues, with a leader peptide containing a double glycine cleavage site to produce a 47-amino-acid mature peptide. Enterocin F4-9 is modified by two molecules of N-acetylglucosamine ß-O-linked to Ser37 and Thr46. The O-linked N-acetylglucosamine moieties are essential for the antimicrobial activity of enterocin F4-9. Further analysis of the enterocin F4-9 gene cluster identified enfC, which has high sequence similarity to a glycosyltransferase. The antimicrobial activity of enterocin F4-9 covered a limited range of bacteria, including, interestingly, a Gram-negative strain, Escherichia coli JM109. Enterocin F4-9 is sensitive to protease, active at a wide pH range, and moderately resistant to heat.


Subject(s)
Bacteriocins/metabolism , Enterococcus faecalis/metabolism , Fish Products/microbiology , Amino Acid Sequence , Bacteria/drug effects , Bacteriocins/chemistry , Bacteriocins/pharmacology , Base Sequence , Bridged-Ring Compounds/chemistry , Bridged-Ring Compounds/metabolism , Bridged-Ring Compounds/pharmacology , Enterococcus faecalis/chemistry , Enterococcus faecalis/genetics , Enterococcus faecalis/isolation & purification , Glycosylation , Molecular Sequence Data
4.
Appl Environ Microbiol ; 80(21): 6647-55, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25149515

ABSTRACT

Enterococcus faecium NKR-5-3, isolated from Thai fermented fish, is characterized by the unique ability to produce five bacteriocins, namely, enterocins NKR-5-3A, -B, -C, -D, and -Z (Ent53A, Ent53B, Ent53C, Ent53D, and Ent53Z). Genetic analysis with a genome library revealed that the bacteriocin structural genes (enkA [ent53A], enkC [ent53C], enkD [ent53D], and enkZ [ent53Z]) that encode these peptides (except for Ent53B) are located in close proximity to each other. This NKR-5-3ACDZ (Ent53ACDZ) enterocin gene cluster (approximately 13 kb long) includes certain bacteriocin biosynthetic genes such as an ABC transporter gene (enkT), two immunity genes (enkIaz and enkIc), a response regulator (enkR), and a histidine protein kinase (enkK). Heterologous-expression studies of enkT and ΔenkT mutant strains showed that enkT is responsible for the secretion of Ent53A, Ent53C, Ent53D, and Ent53Z, suggesting that EnkT is a wide-range ABC transporter that contributes to the effective production of these bacteriocins. In addition, EnkIaz and EnkIc were found to confer self-immunity to the respective bacteriocins. Furthermore, bacteriocin induction assays performed with the ΔenkRK mutant strain showed that EnkR and EnkK are regulatory proteins responsible for bacteriocin production and that, together with Ent53D, they constitute a three-component regulatory system. Thus, the Ent53ACDZ gene cluster is essential for the biosynthesis and regulation of NKR-5-3 enterocins, and this is, to our knowledge, the first report that demonstrates the secretion of multiple bacteriocins by an ABC transporter.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Enterococcus faecium/drug effects , Enterococcus faecium/genetics , Multigene Family , Biosynthetic Pathways , Bridged-Ring Compounds/pharmacology , Enterococcus faecium/isolation & purification , Food Microbiology , Gene Expression Regulation, Bacterial , Thailand
5.
Biosci Biotechnol Biochem ; 76(5): 947-53, 2012.
Article in English | MEDLINE | ID: mdl-22738965

ABSTRACT

Enterocins NKR-5-3A, B, C, and D were purified from the culture supernatant of Enterococcus faecium NKR-5-3 and characterized. Among the four purified peptides, enterocin NKR-5-3A (5242.3 Da) was identical to brochocin A, produced by Brochothrix campestris ATCC 43754, in mature peptides, and its putative synergistic peptide, enterocin NKR-5-3Z, was found to be encoded in ent53Z downstream of ent53A, encoding enterocin NKR-5-3A. Enterocin NKR-5-3B (6316.4 Da) showed a broad antimicrobial spectrum, and enterocin NKR-5-3C (4512.8 Da) showed high activity against Listeria. Enterocin NKR-5-3D (2843.5 Da), showing high homology to an inducing peptide produced by Lactobacillus sakei 5, induced the production of the enterocins. The enterocins showed different antimicrobial spectra and intensities. E. faecium NKR-5-3 concomitantly produced enterocins NKR-5-3A, B, C, and D which probably belong to different classes of bacteriocins. Furthermore, NKR-5-3 production was induced by enterocin NKR-5-3D.


Subject(s)
Bacteriocins/isolation & purification , Enterococcus faecium/metabolism , Fishes/microbiology , Peptides/isolation & purification , Amino Acid Sequence , Animals , Bacteriocins/biosynthesis , Bacteriocins/genetics , Base Sequence , Chromatography, Reverse-Phase , Enterococcus faecium/genetics , Fermentation , Lactobacillus/drug effects , Lactobacillus/metabolism , Microbial Sensitivity Tests , Microbial Viability/drug effects , Molecular Sequence Data , Peptides/genetics , Peptides/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...