Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 946: 173822, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906293

ABSTRACT

Land use conversion of natural to production systems is one of the most important threats to belowground communities and to the key ecosystem processes in which they are involved. Available literature shows positive, negative, and neutral effects of land use changes on soil fauna communities; and these varying effects may be due to different characteristics of natural and production systems and soil organisms. We hypothesize that land conversion from high to low plant biomass, diversity, and structural complexity systems may have the most negative impacts on soil fauna. Here, we performed the first meta-analysis evaluating the overall effects of land use conversion on soil invertebrate communities and the influence of factors related to characteristics of natural and production systems, of soil fauna communities and methods. We compiled a dataset of 260 publications that yielded 1732 observations for soil fauna abundance and 459 for richness. Both abundance and richness showed a global decline as a consequence of natural land conversion to production systems. These negative effects were stronger, in general, when the conversion occurred in tropical and subtropical sites, and when natural systems were replaced by croplands, pastures and grazing systems. The effects of land use conversion also depended on soil property changes. In addition, the abundance of most taxa and richness of Acari and Collembola were strongly reduced by land use changes while Annelida were not affected. The highest reduction in abundance was recorded in omnivores and predators, whereas detritivores showed a reduction in richness. Our meta-analysis shows consistent evidence of soil biodiversity decline due to different land use changes and the partial dependence of those effects on the magnitude of changes in vegetation. These findings stress the need to continue developing production modes that effectively preserve soil biodiversity and ecosystem processes, without hampering food production.

2.
Curr Biol ; 30(16): R959-R961, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32810462

ABSTRACT

Recent field experiments show how photodegradation and its legacy, increased microbial access to labile carbohydrates (photofacilitation), double rates of C loss to the atmosphere in a Mediterranean-type climate. The mechanisms demonstrated have implications for global C modeling beyond Mediterranean ecosystems.


Subject(s)
Dancing , Ecosystem , Carbon , Ecology , Forests , Sunlight
4.
Ecol Evol ; 4(14): 2799-811, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25165520

ABSTRACT

In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This "worldwide leaf economics spectrum" consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf construction and light-interception borne by plants. We conducted a broad-scale analysis of the evolutionary history of LMA across a large dataset of 5401 vascular plant species. The phylogenetic signal in LMA displayed low but significant conservatism, that is, leaf economics tended to be more similar among close relatives than expected by chance alone. Models of trait evolution indicated that LMA evolved under weak stabilizing selection. Moreover, results suggest that different optimal phenotypes evolved among large clades within which extremes tended to be selected against. Conservatism in LMA was strongly related to growth form, as were selection intensity and phenotypic evolutionary rates: woody plants showed higher conservatism in relation to stronger stabilizing selection and lower evolutionary rates compared to herbaceous taxa. The evolutionary history of LMA thus paints different evolutionary trajectories of vascular plant species across clades, revealing the coordination of leaf trait evolution with growth forms in response to varying selection regimes.

5.
Ecol Lett ; 14(3): 301-12, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21265976

ABSTRACT

Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe.


Subject(s)
Biomechanical Phenomena , Plant Leaves/anatomy & histology , Stress, Mechanical , Light , Plant Leaves/physiology , Plant Physiological Phenomena , Plants/anatomy & histology , Rain , Tropical Climate
6.
Proc Natl Acad Sci U S A ; 108(3): 895-902, 2011 Jan 18.
Article in English | MEDLINE | ID: mdl-21220325

ABSTRACT

The crucial role of biodiversity in the links between ecosystems and societies has been repeatedly highlighted both as source of wellbeing and as a target of human actions, but not all aspects of biodiversity are equally important to different ecosystem services. Similarly, different social actors have different perceptions of and access to ecosystem services, and therefore, they have different wants and capacities to select directly or indirectly for particular biodiversity and ecosystem characteristics. Their choices feed back onto the ecosystem services provided to all parties involved and in turn, affect future decisions. Despite this recognition, the research communities addressing biodiversity, ecosystem services, and human outcomes have yet to develop frameworks that adequately treat the multiple dimensions and interactions in the relationship. Here, we present an interdisciplinary framework for the analysis of relationships between functional diversity, ecosystem services, and human actions that is applicable to specific social environmental systems at local scales. We connect the mechanistic understanding of the ecological role of diversity with its social relevance: ecosystem services. The framework permits connections between functional diversity components and priorities of social actors using land use decisions and ecosystem services as the main links between these ecological and social components. We propose a matrix-based method that provides a transparent and flexible platform for quantifying and integrating social and ecological information and negotiating potentially conflicting land uses among multiple social actors. We illustrate the applicability of our framework by way of land use examples from temperate to subtropical South America, an area of rapid social and ecological change.


Subject(s)
Biodiversity , Conservation of Natural Resources/methods , Ecosystem , Models, Theoretical , Consumer Advocacy , Humans , Interdisciplinary Communication , Public Policy , Socioeconomic Factors , South America
7.
Ecol Lett ; 11(10): 1065-71, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18627410

ABSTRACT

Worldwide decomposition rates depend both on climate and the legacy of plant functional traits as litter quality. To quantify the degree to which functional differentiation among species affects their litter decomposition rates, we brought together leaf trait and litter mass loss data for 818 species from 66 decomposition experiments on six continents. We show that: (i) the magnitude of species-driven differences is much larger than previously thought and greater than climate-driven variation; (ii) the decomposability of a species' litter is consistently correlated with that species' ecological strategy within different ecosystems globally, representing a new connection between whole plant carbon strategy and biogeochemical cycling. This connection between plant strategies and decomposability is crucial for both understanding vegetation-soil feedbacks, and for improving forecasts of the global carbon cycle.


Subject(s)
Biodiversity , Plant Leaves/metabolism , Plants/genetics , Biodegradation, Environmental , Biomass , Carbon/chemistry , Climate , Phylogeny , Plant Development , Plant Leaves/genetics , Plants/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...