Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (201)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38047572

ABSTRACT

Acquiring fresh and well-characterized tumor tissue samples is critical for conducting high-quality "omics" studies. However, it can be particularly challenging in the context of prostate cancer (PC) due to the unique nature of this organ and the high heterogeneity associated with this tumor. On the other hand, histopathologically characterizing samples before their storage without causing significant tissue alterations is also an intriguing challenge. In this context, we present a new method for acquiring, mapping, characterizing, and micro-dissecting resected prostate tissue based on anatomopathological criteria. Unlike previously published protocols, this method reduces the time required for histopathological analysis of the prostate specimen without compromising its structure, which is crucial for assessing surgical margins. Furthermore, it enables the delineation and micro-macro dissection of fresh prostate tissue samples, with a focus on histological tumor areas defined by pathological criteria such as Gleason score, precursor lesions (high-grade prostatic intraepithelial neoplasia - PIN), and inflammatory lesions (prostatitis). These samples are then stored in a Biobank for subsequent research analyses.


Subject(s)
Prostatic Intraepithelial Neoplasia , Prostatic Neoplasms , Male , Humans , Biological Specimen Banks , Reproducibility of Results , Prostatic Neoplasms/surgery , Prostatic Neoplasms/pathology , Prostatic Intraepithelial Neoplasia/pathology , Prostate/surgery , Prostate/pathology
2.
Microorganisms ; 11(7)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37512799

ABSTRACT

Candida auris is an emerging yeast of worldwide interest due to its antifungal resistance and mortality rates. The aim of this study was to analyse the in vitro and in vivo antifungal activity of a nanoemulsion loaded with amphotericin B (NEA) against planktonic cells and biofilm of C. auris clinical isolates belonging to four different clades. In vivo assays were performed using the Galleria mellonella model to analyse antifungal activity and histopathological changes. The in vitro results showed that NEA exhibited better antifungal activity than free amphotericin B (AmB) in both planktonic and sessile cells, with >31% inhibition of mature biofilm. In the in vivo assays, NEA demonstrated superior antifungal activity in both haemolymph and tissue. NEA reduced the fungal load in the haemolymph more rapidly and with more activity in the first 24 h after infection. The histological analysis of infected larvae revealed clusters of yeast, immune cells, melanisation, and granulomas. In conclusion, NEA significantly improved the in vitro and in vivo antifungal activity of AmB and could be considered a promising therapy for C. auris infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...