Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Nat Commun ; 13(1): 4725, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35953468

ABSTRACT

Ample evidence indicates that codon usage bias regulates gene expression. How viruses, such as the emerging mosquito-borne Chikungunya virus (CHIKV), express their genomes at high levels despite an enrichment in rare codons remains a puzzling question. Using ribosome footprinting, we analyze translational changes that occur upon CHIKV infection. We show that CHIKV infection induces codon-specific reprogramming of the host translation machinery to favor the translation of viral RNA genomes over host mRNAs with an otherwise optimal codon usage. This reprogramming was mostly apparent at the endoplasmic reticulum, where CHIKV RNAs show high ribosome occupancy. Mechanistically, it involves CHIKV-induced overexpression of KIAA1456, an enzyme that modifies the wobble U34 position in the anticodon of tRNAs, which is required for proper decoding of codons that are highly enriched in CHIKV RNAs. Our findings demonstrate an unprecedented interplay of viruses with the host tRNA epitranscriptome to adapt the host translation machinery to viral production.


Subject(s)
Chikungunya Fever , Chikungunya virus , Animals , Chikungunya virus/genetics , Codon/genetics , Codon/metabolism , Humans , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism
2.
Br J Pharmacol ; 179(14): 3576-3591, 2022 07.
Article in English | MEDLINE | ID: mdl-32959389

ABSTRACT

BACKGROUND AND PURPOSE: The transient receptor potential vanilloid 4 (TRPV4) cation channel participates in multiple physiological processes and is also at the core of different diseases, making this channel an interesting pharmacological target with therapeutic potential. However, little is known about the structural elements governing its inhibition. EXPERIMENTAL APPROACH: We have now combined in silico drug discovery and molecular dynamics simulation based on Xenopus tropicalis xTRPV4 structure with functional studies measuring cell Ca2+ influx mediated by human TRPV4 channel to characterize the binding site of known TRPV4 inhibitors and to identify novel small molecule channel modulators. KEY RESULTS: We have found that the inhibitor HC067047 binds to a pocket conformed by residues from S2-S3 linker (xTRPV4-D542), S4 (xTRPV4-M583 and Y587 and S5 (xTRPV4-D609 and F613). This pocket was also used for structure-based virtual screening in the search of novel channel modulators. Forty potential hits were selected based on the lower docking scores (from ~250,000 compounds) and their effect upon TRPV4 functionally tested. Three were further analysed for stability using molecular dynamics simulation and functionally tested on TRPV4 channels carrying mutations in the binding pocket. Compound NSC151066, shown to require residue xTRPV4-M583 for its inhibitory effect, presented an IC50 of 145 nM and demonstrated to be an effective antiviral against Zika virus with a potency similar to HC067047. CONCLUSION AND IMPLICATIONS: Together, we propose structural insights into the inhibition of TRPV4 and how this information can be used for the design of novel channel modulators. LINKED ARTICLES: This article is part of a themed issue on Structure Guided Pharmacology of Membrane Proteins (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.14/issuetoc.


Subject(s)
Transient Receptor Potential Channels , Zika Virus Infection , Zika Virus , Animals , Antiviral Agents/pharmacology , Binding Sites , Humans , TRPV Cation Channels/metabolism , Transient Receptor Potential Channels/metabolism , Xenopus/metabolism , Zika Virus/metabolism
3.
ACS Pharmacol Transl Sci ; 4(5): 1499-1513, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34661071

ABSTRACT

While a drug treatment is unavailable, the global incidence of Dengue virus (DENV) infections and its associated severe manifestations continues to rise. We report the construction of the first physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model that predicts viremia levels in relevant target organs based on preclinical data with the broad spectrum antiviral soraphen A (SorA), an inhibitor of the host cell target acetyl-CoA-carboxylase. SorA was highly effective against DENV in vitro (EC50 = 4.7 nM) and showed in vivo efficacy by inducing a significant reduction of viral load in the spleen and liver of IFNAR-/- mice infected with DENV-2. PBPK/PD predictions for SorA matched well with the experimental infection data. Transfer to a human PBPK/PD model for DENV to mimic a clinical scenario predicted a reduction in viremia by more than one log10 unit for an intravenous infusion regimen of SorA. The PBPK/PD model is applicable to any DENV drug lead and, thus, represents a valuable tool to accelerate and facilitate DENV drug discovery and development.

4.
Nutrients ; 13(2)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572045

ABSTRACT

BACKGROUND: Zinc is an essential micronutrient that impacts host-pathogen interplay at infection. Zinc balances immune responses, and also has a proven direct antiviral action against some viruses. Importantly, zinc deficiency (ZD) is a common condition in elderly and individuals with chronic diseases, two groups with an increased risk for severe severe coronavirus disease 2019 (COVID-19) outcomes. We hypothesize that serum zinc content (SZC) influences COVID-19 disease progression, and thus might represent a useful biomarker. METHODS: We ran an observational cohort study with 249 COVID-19 patients admitted in Hospital del Mar. We have studied COVID-19 severity and progression attending to SZC at admission. In parallel, we have studied severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) replication in the Vero E6 cell line modifying zinc concentrations. FINDINGS: Our study demonstrates a correlation between serum zinc levels and COVID-19 outcome. Serum zinc levels lower than 50 µg/dL at admission correlated with worse clinical presentation, longer time to reach stability, and higher mortality. Our in vitro results indicate that low zinc levels favor viral expansion in SARS-CoV-2 infected cells. INTERPRETATION: Low SZC is a risk factor that determines COVID-19 outcome. We encourage performing randomized clinical trials to study zinc supplementation as potential prophylaxis and treatment with people at risk of zinc deficiency.


Subject(s)
COVID-19/blood , COVID-19/pathology , SARS-CoV-2 , Zinc/blood , Aged , Animals , Cell Survival , Chlorocebus aethiops , Cohort Studies , Female , Humans , Male , Middle Aged , Vero Cells , Zinc/administration & dosage , Zinc/pharmacology
5.
PLoS Pathog ; 16(8): e1008346, 2020 08.
Article in English | MEDLINE | ID: mdl-32764824

ABSTRACT

Viruses subvert macromolecular pathways in infected host cells to aid in viral gene amplification or to counteract innate immune responses. Roles for host-encoded, noncoding RNAs, including microRNAs, have been found to provide pro- and anti-viral functions. Recently, circular RNAs (circRNAs), that are generated by a nuclear back-splicing mechanism of pre-mRNAs, have been implicated to have roles in DNA virus-infected cells. This study examines the circular RNA landscape in uninfected and hepatitis C virus (HCV)-infected liver cells. Results showed that the abundances of distinct classes of circRNAs were up-regulated or down-regulated in infected cells. Identified circRNAs displayed pro-viral effects. One particular up-regulated circRNA, circPSD3, displayed a very pronounced effect on viral RNA abundances in both hepatitis C virus- and Dengue virus-infected cells. Though circPSD3 has been shown to bind factor eIF4A3 that modulates the cellular nonsense-mediated decay (NMD) pathway, circPSD3 regulates RNA amplification in a pro-viral manner at a post-translational step, while eIF4A3 exhibits the anti-viral property of the NMD pathway. Findings from the global analyses of the circular RNA landscape argue that pro-, and likely, anti-viral functions are executed by circRNAs that modulate viral gene expression as well as host pathways. Because of their long half-lives, circRNAs likely play hitherto unknown, important roles in viral pathogenesis.


Subject(s)
Carcinoma, Hepatocellular/virology , Hepacivirus/genetics , Hepatitis C/complications , Liver Neoplasms/virology , Proviruses/genetics , RNA, Circular/genetics , RNA, Viral/genetics , Virus Replication , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , Gene Expression Profiling , Hepatitis C/virology , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Nonsense Mediated mRNA Decay , Viral Proteins/genetics , Viral Proteins/metabolism
6.
Liver Int ; 38(3): 388-398, 2018 03.
Article in English | MEDLINE | ID: mdl-28782251

ABSTRACT

Over the last few years, many reports have defined several types of RNA cell granules composed of proteins and messenger RNA (mRNA) that regulate gene expression on a post-transcriptional level. Processing bodies (P-bodies) and stress granules (SGs) are among the best-known RNA granules, only detectable when they accumulate into very dynamic cytosolic foci. Recently, a tight association has been found between positive-stranded RNA viruses, including hepatitis C virus (HCV), and these granules. The present article offers a comprehensive review on the complex and paradoxical relationship between HCV, P-bodies and SGs from a translational perspective. Despite the fact that components of P-bodies and SGs have assiduously controlled mRNA expression, either by sequestration or degradation, for thousands of years, HCV has learned how to dangerously exploit certain of them for its own benefit in an endless biological war. Thus, HCV has gained the ability to hack ancient host machineries inherited from prokaryotic times. While P-bodies and SGs are crucial to the HCV cycle, in the interferon-free era we still lack detailed knowledge of the mechanisms involved, processes that may underlie the long-term complications of HCV infection.


Subject(s)
Cytoplasmic Granules/physiology , Hepacivirus/physiology , RNA, Messenger/metabolism , Cell Line , Gene Expression , Hepacivirus/genetics , Humans , Microscopy, Fluorescence , RNA, Viral/genetics , Virus Replication/physiology
7.
Article in English | MEDLINE | ID: mdl-28193659

ABSTRACT

A hepatitis C virus (HCV) epidemic affecting HIV-infected men who have sex with men (MSM) is expanding worldwide. In spite of the improved cure rates obtained with the new direct-acting antiviral drug (DAA) combinations, the high rate of reinfection within this population calls urgently for novel preventive interventions. In this study, we determined in cell culture and ex vivo experiments with human colorectal tissue that lipoquads, G-quadruplex DNA structures fused to cholesterol, are efficient HCV pangenotypic entry and cell-to-cell transmission inhibitors. Thus, lipoquads may be promising candidates for the development of rectally applied gels to prevent HCV transmission.


Subject(s)
Antiviral Agents/therapeutic use , Cholesterol/therapeutic use , Hepacivirus/drug effects , Hepatitis C/drug therapy , Hepatitis C/transmission , Oligonucleotides/therapeutic use , Virus Internalization/drug effects , Cell Line, Tumor , Cholesterol/chemistry , G-Quadruplexes , HEK293 Cells , HIV Infections , Hepacivirus/growth & development , Homosexuality, Male , Humans , Male , Oligonucleotides/chemistry
8.
J Virol ; 90(4): 1918-30, 2016 02 15.
Article in English | MEDLINE | ID: mdl-26656684

ABSTRACT

UNLABELLED: Hepatitis C virus (HCV) infection is the leading cause of chronic liver diseases. Water extracts of the leaves of the wild Egyptian artichoke (WEA) [Cynara cardunculus L. var. sylvestris (Lam.) Fiori] have been used for centuries in the Sinai Peninsula to treat hepatitis symptoms. Here we isolated and characterized six compounds from the water extracts of WEA and evaluated their HCV inhibition capacities in vitro. Importantly, two of these compounds, grosheimol and cynaropicrin, inhibited HCV with half-maximal effective concentrations (EC50s) in the low micromolar range. They inhibited HCV entry into target cells and were active against both cell-free infection as well as cell-cell transmission. Furthermore, the antiviral activity of both compounds was pan-genotypic as HCV genotypes 1a, 1b, 2b, 3a, 4a, 5a, 6a, and 7a were inhibited. Thus, grosheimol and cynaropicrin are promising candidates for the development of new pan-genotypic entry inhibitors of HCV infection. IMPORTANCE: Because there is no preventive HCV vaccine available today, the discovery of novel anti-HCV cell entry inhibitors could help develop preventive measures against infection. The present study describes two compounds isolated from the wild Egyptian artichoke (WEA) with respect to their structural elucidation, absolute configuration, and quantitative determination. Importantly, both compounds inhibited HCV infection in vitro. The first compound was an unknown molecule, and it was designated "grosheimol," while the second compound is the known molecule cynaropicrin. Both compounds belong to the group of sesquiterpene lactones. The mode of action of these compounds occurred during the early steps of the HCV life cycle, including cell-free and cell-cell infection inhibition. These natural compounds present promising candidates for further development into anti-HCV therapeutics.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , Cynara/chemistry , Hepacivirus/drug effects , Plant Extracts/pharmacology , Antiviral Agents/isolation & purification , Biological Products/isolation & purification , Hepacivirus/physiology , Lactones/isolation & purification , Lactones/pharmacology , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Virus Internalization/drug effects
9.
J Hepatol ; 63(4): 813-21, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26070407

ABSTRACT

BACKGROUND & AIMS: Soraphen A (SorA) is a myxobacterial metabolite that inhibits the acetyl-CoA carboxylase, a key enzyme in lipid biosynthesis. We have previously identified SorA to efficiently inhibit the human immunodeficiency virus (HIV). The aim of the present study was to evaluate the capacity of SorA and analogues to inhibit hepatitis C virus (HCV) infection. METHODS: SorA inhibition capacity was evaluated in vitro using cell culture derived HCV, HCV pseudoparticles and subgenomic replicons. Infection studies were performed in the hepatoma cell line HuH7/Scr and in primary human hepatocytes. The effects of SorA on membranous web formation were analysed by electron microscopy. RESULTS: SorA potently inhibits HCV infection at nanomolar concentrations. Obtained EC50 values were 0.70 nM with a HCV reporter genome, 2.30 nM with wild-type HCV and 2.52 nM with subgenomic HCV replicons. SorA neither inhibited HCV RNA translation nor HCV entry, as demonstrated with subgenomic HCV replicons and HCV pseudoparticles, suggesting an effect on HCV replication. Consistent with this, evidence was obtained that SorA interferes with formation of the membranous web, the site of HCV replication. Finally, a series of natural and synthetic SorA analogues helped to establish a first structure-activity relationship. CONCLUSIONS: SorA has a very potent anti-HCV activity. Since it also interferes with the membranous web formation, SorA is an excellent tool to unravel the mechanism of HCV replication.


Subject(s)
Hepacivirus/genetics , Hepatitis C/drug therapy , Hepatocytes/drug effects , Macrolides/pharmacology , RNA, Viral/genetics , Virus Replication/drug effects , Antiviral Agents/pharmacology , Cell Line , Hepacivirus/drug effects , Hepatitis C/pathology , Hepatitis C/virology , Hepatocytes/ultrastructure , Hepatocytes/virology , Humans , Microscopy, Electron
10.
J Hepatol ; 62(4): 785-90, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25463546

ABSTRACT

BACKGROUND & AIMS: Decoding the myriad of interactions that hepatitis C virus (HCV) establishes with infected cells is mandatory to obtain a complete understanding of HCV biology and its associated pathogenesis. We and others have previously found that HCV infection disrupts the formation of P-bodies in cell culture. These are cytoplasmic RNA granules with key roles in post-transcriptional regulation of gene expression. Therefore, P-body disruption might have consequences beyond viral propagation. However, whether P-body disruption occurs also in vivo is unknown. Aim of this study was to address this important issue. METHODS: Formalin-fixed paraffin-embedded liver biopsies from four groups of patients (healthy donors, patients with non-virus related liver inflammation, HCV- and HBV-infected patients) were immunostained to detect DDX6 and Dcp1, two core P-body components. Changes in the localization of these proteins were assessed by confocal microscopy. RESULTS: HCV specifically inhibited P-body formation in hepatocytes from human livers regardless of viral genotype, inflammation grade or whether the infection was recent or long established. Importantly, this alteration was reversed once HCV was eliminated by therapy. Furthermore, we observed in vivo an unexpected heterogeneity in P-body composition, which might reflect functional specializations. CONCLUSIONS: This is the first comprehensive in vivo P-body analysis that links a pathogenic condition to P-body alterations. Because of their role in gene expression, the alteration of P-bodies should be further studied to understand fully complex HCV-associated pathologies.


Subject(s)
Cytoplasmic Granules/physiology , DEAD-box RNA Helicases , Endopeptidases , Hepacivirus , Hepatitis C, Chronic , Proto-Oncogene Proteins , Adult , DEAD-box RNA Helicases/biosynthesis , DEAD-box RNA Helicases/immunology , Endopeptidases/biosynthesis , Endopeptidases/immunology , Female , Hepacivirus/pathogenicity , Hepacivirus/physiology , Hepatitis C, Chronic/immunology , Hepatitis C, Chronic/metabolism , Hepatocytes/metabolism , Host-Pathogen Interactions , Humans , Male , Middle Aged , Proto-Oncogene Proteins/biosynthesis , Proto-Oncogene Proteins/immunology , Viral Load
11.
RNA Biol ; 10(11): 1661-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24418890

ABSTRACT

Processing bodies (P-bodies) are cytoplasmatic mRNP granules containing non-translating mRNAs and proteins from the mRNA decay and silencing machineries. The mechanism of P-body assembly has been typically addressed by depleting P-body components. Here we apply a complementary approach and establish an automated cell-based assay platform to screen for molecules affecting P-body assembly. From a unique library of compounds derived from myxobacteria, 30 specifically inhibited P-body assembly. Gephyronic acid A (GA), a eukaryotic protein synthesis inhibitor, showed the strongest effect. GA also inhibited, under stress conditions, phosphorylation of eIF2α and stress granule formation. Other hits uncovered interesting novel links between P-body assembly, lipid metabolism, and internal organelle physiology. The obtained results provide a chemical toolbox to manipulate P-body assembly and function.


Subject(s)
Cytoplasmic Granules/metabolism , Drug Discovery , Myxococcales/chemistry , Ribonucleoproteins, Small Cytoplasmic/metabolism , Small Molecule Libraries , Cell Line, Tumor , Cycloheximide/pharmacology , Cytoplasmic Granules/drug effects , Eukaryotic Initiation Factor-2/metabolism , Fatty Acids, Monounsaturated/pharmacology , HeLa Cells , Humans , Lipid Metabolism , Myxococcales/metabolism , Phosphorylation , Puromycin/pharmacology , RNA Stability
12.
J Virol ; 86(16): 8740-9, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22674998

ABSTRACT

Processing bodies (P-bodies) are highly dynamic cytoplasmic granules conserved among eukaryotes. They are present under normal growth conditions and contain translationally repressed mRNAs together with proteins from the mRNA decay and microRNA (miRNA) machineries. We have previously shown that the core P-body components PatL1, LSm1, and DDX6 (Rck/p54) are required for hepatitis C virus (HCV) RNA replication; however, how HCV infection affects P-body granules and whether P-body granules per se influence the HCV life cycle remain unresolved issues. Here we show that HCV infection alters P-body composition by specifically changing the localization pattern of P-body components that are required for HCV replication. This effect was not related to an altered expression level of these components and could be reversed by inhibiting HCV replication with a polymerase inhibitor. Similar observations were obtained with a subgenomic replicon that supports only HCV translation and replication, indicating that these early steps of the HCV life cycle trigger the P-body alterations. Finally, P-body disruption by Rap55 depletion did not affect viral titers or HCV protein levels, demonstrating that the localization of PatL1, LSm1, and DDX6 in P-bodies is not required for their function on HCV. Thus, the HCV-induced changes on P-bodies are mechanistically linked to the function of specific P-body components in HCV RNA translation and replication; however, the formation of P-body granules is not required for HCV infection.


Subject(s)
Cytoplasmic Granules/chemistry , Hepacivirus/physiology , Virus Replication , Cell Line , DEAD-box RNA Helicases/analysis , DNA-Binding Proteins/analysis , Hepatocytes/virology , Humans , Protein Transport , Proto-Oncogene Proteins/analysis , RNA-Binding Proteins/analysis
13.
J Hepatol ; 55(4): 777-83, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21334392

ABSTRACT

BACKGROUND & AIMS: The Hepatitis C virus (HCV) exhibits large genetic diversity, both on a global scale and at the level of the infected individual. A major underlying mechanism of the observed sequence differences is error-prone virus replication by the viral RNA polymerase NS5B. In addition, based on phylogenetic comparisons of patient-derived HCV sequences, there is evidence of HCV recombination. However, to date little is known about the frequency by which recombination events occur in HCV and under what conditions recombination may become important in HCV evolution. We, therefore, aimed to set up an experimental model system that would allow us to analyze and to characterize recombination events during HCV replication. METHODS: A neomycin-selectable, HCV replicon-based recombination detection system was established. HCV replicons were mutated within either the neomycin-phosphotransferase gene or the NS5B polymerase. Upon co-transfection of hepatic cells lines, recombination between the mutated sites is necessary to restore the selectable phenotype. RESULTS: Recombinants were readily detected with frequencies correlating to the distance between the mutations. The recombinant frequency normalized to a crossover range of one nucleotide was around 4 × 10(-8). CONCLUSIONS: An experimental system to select for HCV recombinants in cell culture was successfully established. It allowed deriving first estimates of recombinant frequencies. Based on these, recombination in HCV seems rare. However, due to the rapid virus turnover and the large number of HCV-infected liver cells in vivo, it is expected that recombination will be of biological importance when strong selection pressures are operative.


Subject(s)
Evolution, Molecular , Hepacivirus/genetics , Hepatitis C/virology , RNA, Viral/genetics , Recombination, Genetic , Carcinoma, Hepatocellular , Cell Line, Tumor , Hepacivirus/growth & development , Humans , Kanamycin Kinase/genetics , Liver Neoplasms , Mutation/genetics , Phylogeny , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...