Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Microb Cell Fact ; 23(1): 140, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760827

ABSTRACT

BACKGROUND: Quantum Dots (QDs) are fluorescent nanoparticles with exceptional optical and optoelectronic properties, finding widespread utility in diverse industrial applications. Presently, chemically synthesized QDs are employed in solar cells, bioimaging, and various technological domains. However, many applications demand QDs with prolonged lifespans under conditions of high-energy radiation. Over the past decade, microbial biosynthesis of nanomaterials has emerged as a sustainable and cost-effective process. In this context, the utilization of extremophile microorganisms for synthesizing QDs with unique properties has recently been reported. RESULTS: In this study, UV-resistant bacteria were isolated from one of the most extreme environments in Antarctica, Union Glacier at the Ellsworth Mountains. Bacterial isolates, identified through 16 S sequencing, belong to the genera Rhodococcus, Pseudarthrobacter, and Arthrobacter. Notably, Rhodococcus sp. (EXRC-4 A-4), Pseudarthrobacter sp. (RC-2-3), and Arthrobacter sp. (EH-1B-1) tolerate UV-C radiation doses ≥ 120 J/m². Isolated UV-resistant bacteria biosynthesized CdS QDs with fluorescence intensities 4 to 8 times higher than those biosynthesized by E. coli, a mesophilic organism tolerating low doses of UV radiation. Transmission electron microscopy (TEM) analysis determined QD sizes ranging from 6 to 23 nm, and Fourier-transform infrared (FTIR) analysis demonstrated the presence of biomolecules. QDs produced by UV-resistant Antarctic bacteria exhibit high photostability after exposure to UV-B radiation, particularly in comparison to those biosynthesized by E. coli. Interestingly, red fluorescence-emitting QDs biosynthesized by Rhodococcus sp. (EXRC-4 A-4) and Arthrobacter sp. (EH-1B-1) increased their fluorescence emission after irradiation. Analysis of methylene blue degradation after exposure to irradiated QDs biosynthesized by UV-resistant bacteria, indicates that the QDs transfer their electrons to O2 for the formation of reactive oxygen species (ROS) at different levels. CONCLUSIONS: UV-resistant Antarctic bacteria represent a novel alternative for the sustainable generation of nanostructures with increased radiation tolerance-two characteristics favoring their potential application in technologies requiring continuous exposure to high-energy radiation.


Subject(s)
Cadmium Compounds , Quantum Dots , Rhodococcus , Ultraviolet Rays , Quantum Dots/chemistry , Antarctic Regions , Cadmium Compounds/metabolism , Cadmium Compounds/chemistry , Rhodococcus/metabolism , Rhodococcus/genetics , Arthrobacter/metabolism , Arthrobacter/genetics , Sulfides/metabolism , Sulfides/chemistry
2.
Microorganisms ; 12(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543675

ABSTRACT

Copper nanoparticles (Cu NPs) show promise in dentistry for combating bacterial dysbiosis and tooth decay. Understanding their effects on commensal versus pathogenic bacteria is vital for maintaining oral health balance. While Cu NPs demonstrate antibacterial properties against various oral bacteria, including common pathogens associated with tooth decay, their impact on commensal bacteria requires careful examination. In our work, we analyzed three types of Cu NPs for their effects on the growth, viability, and biofilm formation of representative caries-associated and commensal oral bacteria. S. sanguinis showed high tolerance to all Cu NPs, while L. rhamnosus was highly sensitive. Oxide-Cu NPs exhibited a stronger inhibitory effect on pathobionts compared with commensal bacteria. Moreover, the biofilm formation of the key cariogenic bacteria S. mutans was reduced, with minimal negative effects on commensal species' biofilm formation. All our results showed that CuO nanoparticles (CuO NPs) exhibit reduced toxicity toward commensal bacteria growth and development but have a strong impact on pathogens. This suggests their potential for targeted treatments against pathogenic bacteria, which could help in maintaining the balance of the oral bacterial community.

3.
Nanomaterials (Basel) ; 14(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38535700

ABSTRACT

In recent years, the utilization of extremophile microorganisms for the synthesis of metal nanoparticles, featuring enhanced properties and diverse compositions, has emerged as a sustainable strategy to generate high-quality nanomaterials with unique characteristics. Our study focuses on the biosynthesis of Cu-In-S (CIS) nanoparticles, which has garnered considerable attention in the past decade due to their low toxicity and versatile applications in biomedicine and solar cells. Despite this interest, there is a notable absence of reports on biological methods for CIS nanoparticle synthesis. In this research, three yeast species were isolated from soil samples in an extreme Antarctic environment-Union Glacier, Ellsworth Mountains. Among these isolates, Filobasidium stepposum demonstrated the capability to biosynthesize CIS nanoparticles when exposed to copper sulfate, indium chloride, glutathione, and cysteine. Subsequent purification and spectroscopic characterization confirmed the presence of characteristic absorbance and fluorescence peaks for CIS nanoparticles at 500 and 650 nm, respectively. Transmission electron microscopy analysis revealed the synthesis of monodisperse nanoparticles with a size range of 3-5 nm. Energy dispersive X-ray spectroscopy confirmed the composition of the nanoparticles, revealing the presence of copper, indium, and sulfur. The copper/indium ratio ranged from 0.15 to 0.27, depending on the reaction time. The biosynthesized CIS nanoparticles showed higher photostability than biomimetic nanoparticles and demonstrated successful application as photosensitizers in quantum dot-sensitized solar cells (QDSSC), achieving a conversion efficiency of up to 0.0247%. In summary, this work presents a cost-effective, straightforward, and environmentally friendly method for CIS nanoparticle synthesis. Furthermore, it constitutes the first documented instance of a biological procedure for producing these nanoparticles, opening avenues for the development of environmentally sustainable solar cells.

4.
J Nanobiotechnology ; 22(1): 78, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414055

ABSTRACT

BACKGROUND: Bacterial biosynthesis of fluorescent nanoparticles or quantum dots (QDs) has emerged as a unique mechanism for heavy metal tolerance. However, the physiological pathways governing the removal of QDs from bacterial cells remains elusive. This study investigates the role of minicells, previously identified as a means of eliminating damaged proteins and enhancing bacterial resistance to stress. Building on our prior work, which unveiled the formation of minicells during cadmium QDs biosynthesis in Escherichia coli, we hypothesize that minicells serve as a mechanism for the accumulation and detoxification of QDs in bacterial cells. RESULTS: Intracellular biosynthesis of CdS QDs was performed in E. coli mutants ΔminC and ΔminCDE, known for their minicell-producing capabilities. Fluorescence microscopy analysis demonstrated that the generated minicells exhibited fluorescence emission, indicative of QD loading. Transmission electron microscopy (TEM) confirmed the presence of nanoparticles in minicells, while energy dispersive spectroscopy (EDS) revealed the coexistence of cadmium and sulfur. Cadmium quantification through flame atomic absorption spectrometry (FAAS) demonstrated that minicells accumulated a higher cadmium content compared to rod cells. Moreover, fluorescence intensity analysis suggested that minicells accumulated a greater quantity of fluorescent nanoparticles, underscoring their efficacy in QD removal. Biosynthesis dynamics in minicell-producing strains indicated that biosynthesized QDs maintained high fluorescence intensity even during prolonged biosynthesis times, suggesting continuous QD clearance in minicells. CONCLUSIONS: These findings support a model wherein E. coli utilizes minicells for the accumulation and removal of nanoparticles, highlighting their physiological role in eliminating harmful elements and maintaining cellular fitness. Additionally, this biosynthesis system presents an opportunity for generating minicell-coated nanoparticles with enhanced biocompatibility for diverse applications.


Subject(s)
Cadmium Compounds , Nanoparticles , Quantum Dots , Sulfides , Escherichia coli/metabolism , Cadmium , Nanoparticles/chemistry , Quantum Dots/chemistry , Coloring Agents/metabolism
5.
Environ Sci Pollut Res Int ; 31(11): 17256-17274, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38337121

ABSTRACT

The xenobiotic 2,4,6-trinitrotoluene (TNT) is a highly persistent environmental contaminant, whose biotransformation by microorganisms has attracted renewed attention. In previous research, we reported the discovery of Pseudomonas sp. TNT3, the first described Antarctic bacterium with the ability to biotransform TNT. Furthermore, through genomic analysis, we identified distinctive features in this isolate associated with the biotransformation of TNT and other xenobiotics. However, the metabolic pathways and genes active during TNT exposure in this bacterium remained unexplored. In the present transcriptomic study, we used RNA-sequencing to investigate gene expression changes in Pseudomonas sp. TNT3 exposed to 100 mg/L of TNT. The results showed differential expression of 194 genes (54 upregulated and 140 downregulated), mostly encoding hypothetical proteins. The most highly upregulated gene (> 1000-fold) encoded an azoreductase enzyme not previously described. Other significantly upregulated genes were associated with (nitro)aromatics detoxification, oxidative, thiol-specific, and nitrosative stress responses, and (nitro)aromatic xenobiotic tolerance via efflux pumps. Most of the downregulated genes were involved in the electron transport chain, pyrroloquinoline quinone (PQQ)-related alcohol oxidation, and motility. These findings highlight a complex cellular response to TNT exposure, with the azoreductase enzyme likely playing a crucial role in TNT biotransformation. Our study provides new insights into the molecular mechanisms of TNT biotransformation and aids in developing effective TNT bioremediation strategies. To the best of our knowledge, this report is the first transcriptomic response analysis of an Antarctic bacterium during TNT biotransformation.


Subject(s)
Trinitrotoluene , Trinitrotoluene/metabolism , Pseudomonas/genetics , Pseudomonas/metabolism , Xenobiotics/metabolism , Biotransformation , Bacteria/metabolism , Biodegradation, Environmental , Gene Expression Profiling
6.
Arch Microbiol ; 206(1): 39, 2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38142428

ABSTRACT

Two motile, rod-shaped, Gram-stain-negative bacterial strains, TNT11T and TNT19T, were isolated from soil samples collected at Deception Island, Antarctica. According to the 16S rRNA gene sequence similarity, both strains belong to the genus Pseudomonas. Further genomic analyses based on ANI and dDDH suggested that these strains were new species. Growth of strain TNT11T is observed at 0-30 â„ƒ (optimum, 20 â„ƒ), pH 4.0-9.0 (optimum, pH 6.0) and in the presence of 0-5.0% NaCl (optimum, 1% NaCl), while for TNT19T is observed at 0-30 â„ƒ (optimum between 15 and 20 â„ƒ), pH 5.0-9.0 (optimum, pH 6.0) and in the presence of 0-5.0% NaCl (optimum between 0 and 1% NaCl). The fatty acid profile consists of the major compounds; C16:0 and C16:1 ω6 for TNT11T, and C16:0 and C12:0 for TNT19T. Based on the draft genome sequences, the DNA G + C content for TNT11T is 60.43 mol% and 58.60 mol% for TNT19T. Based on this polyphasic study, TNT11T and TNT19T represent two novel species of the genus Pseudomonas, for which the proposed names are Pseudomonas violetae sp. nov. and Pseudomonas emilianonis sp. nov., respectively. The type strains are Pseudomonas violetae TNT11T (= RGM 3443T = LMG 32959T) and Pseudomonas emilianonis TNT19T (= RGM 3442T = LMG 32960T). Strains TNT11T and TNT19T were deposited to CChRGM and BCCM/LMG with entry numbers RGM 3443/LMG 32959 and RGM 3442/LMG 32960, respectively.


Subject(s)
Phospholipids , Pseudomonas , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Antarctic Regions , Pseudomonas/genetics , Sodium Chloride , DNA, Bacterial/genetics , Sequence Analysis, DNA , Nucleic Acid Hybridization , Phylogeny , Bacterial Typing Techniques , Fatty Acids/chemistry , Deception , Soil
7.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Article in English | MEDLINE | ID: mdl-37861393

ABSTRACT

A Gram-stain-positive, catalase-positive, non-motile bacteria, with a rod-coccus cycle (designated as EH-1B-1T) was isolated from a soil sample from Union Glacier in Ellsworth Mountains, Antarctica. Strain EH-1B-1T had an optimal growth temperature of 28 °C and grew at pH 7-10. The major cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0, C16 : 0 and anteiso-C17 : 0. The G+C content based on the whole genome sequence was 63.1 mol%. Strain EH-1B-1T was most closely related to members of the genus Arthrobacter, namely Arthrobacter subterraneus and Arthrobacter tumbae. The strain grew on tryptic soy agar, Reasoner's 2A agar, lysogeny broth agar and nutrient agar. The average nucleotide identity and digital DNA-DNA hybridization values between strain EH-1B-1T and its closest reference type strains ranged from 78 to 88 % and from 20.9 to 36.3 %, respectively. Based on phenotypic, chemotypic and genotypic evidence, it is proposed that strain EH-1B-1T represents a novel species of Arthrobacter, for which the name Arthrobacter vasquezii sp. nov. is proposed, with strain EH-1B-1T (RGM 3386T=LMG 32961T) as the type strain.


Subject(s)
Arthrobacter , Fatty Acids , Fatty Acids/chemistry , Phospholipids/chemistry , Ice Cover , Antarctic Regions , Agar , Base Composition , Phylogeny , DNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Bacterial Typing Techniques , Sequence Analysis, DNA , Soil Microbiology , Vitamin K 2/chemistry , Peptidoglycan/chemistry , Soil
8.
Int J Mol Sci ; 24(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37445681

ABSTRACT

Copper is a metal historically used to prevent infections. One of the most relevant challenges in modern society are infectious disease outbreaks, where copper-based technologies can play a significant role. Currently, copper nanoparticles and surfaces are the most common antimicrobial copper-based technologies. Despite the widespread use of copper on nanoparticles and surfaces, the toxicity mechanism(s) explaining their unique antimicrobial properties are not entirely known. In general, toxicity effects described in bacteria and fungi involve the rupture of membranes, accumulation of ions inside the cell, protein inactivation, and DNA damage. A few studies have associated Cu-toxicity with ROS production and genetic material degradation in viruses. Therefore, understanding the mechanisms of the toxicity of copper nanoparticles and surfaces will contribute to developing and implementing efficient antimicrobial technologies to combat old and new infectious agents that can lead to disease outbreaks such as COVID-19. This review summarizes the current knowledge regarding the microbial toxicity of copper nanoparticles and surfaces and the gaps in this knowledge. In addition, we discuss potential applications derived from discovering new elements of copper toxicity, such as using different molecules or modifications to potentiate toxicity or antimicrobial specificity.


Subject(s)
Anti-Infective Agents , COVID-19 , Metal Nanoparticles , Nanoparticles , Viruses , Humans , Copper/toxicity , Anti-Infective Agents/pharmacology , Metal Nanoparticles/toxicity
9.
Microorganisms ; 11(6)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37375102

ABSTRACT

The present study examined the biosynthesis and characterization of selenium nanoparticles (SeNPs) using two contrasting endophytic selenobacteria, one Gram-positive (Bacillus sp. E5 identified as Bacillus paranthracis) and one Gram-negative (Enterobacter sp. EC5.2 identified as Enterobacter ludwigi), for further use as biofortifying agents and/or for other biotechnological purposes. We demonstrated that, upon regulating culture conditions and selenite exposure time, both strains were suitable "cell factories" for producing SeNPs (B-SeNPs from B. paranthracis and E-SeNPs from E. ludwigii) with different properties. Briefly, dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) studies revealed that intracellular E-SeNPs (56.23 ± 4.85 nm) were smaller in diameter than B-SeNPs (83.44 ± 2.90 nm) and that both formulations were located in the surrounding medium or bound to the cell wall. AFM images indicated the absence of relevant variations in bacterial volume and shape and revealed the existence of layers of peptidoglycan surrounding the bacterial cell wall under the conditions of biosynthesis, particularly in the case of B. paranthracis. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) showed that SeNPs were surrounded by the proteins, lipids, and polysaccharides of bacterial cells and that the numbers of the functional groups present in B-SeNPs were higher than in E-SeNPs. Thus, considering that these findings support the suitability of these two endophytic stains as potential biocatalysts to produce high-quality Se-based nanoparticles, our future efforts must be focused on the evaluation of their bioactivity, as well as on the determination of how the different features of each SeNP modulate their biological action and their stability.

10.
Arch Microbiol ; 205(7): 271, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37358740

ABSTRACT

Isolation of hydrocarbon-degrading bacteria is a key step for the study of microbiological diversity, metabolic pathways, and bioremediation. However current strategies lack simplicity and versatility. We developed an easy method for the screening and isolation of bacterial colonies capable of degrading hydrocarbons, such as diesel or polycyclic aromatic hydrocarbons (PAHs), as well as the pollutant explosive, 2,4,6-trinitrotoluene (TNT). The method uses a two-layer solid medium, with a layer of M9 medium, and a second layer containing the carbon source deposited through the evaporation of ethanol. Using this medium we grew hydrocarbon-degrading strains, as well as TNT-degrading isolates. We were able to isolate PAHs-degrading bacterial colonies directly from diesel-polluted soils. As a proof of concept, we used this method to isolate a phenanthrene-degrading bacteria, identified as Acinetobacter sp. and determined its ability to biodegrade this hydrocarbon.


Subject(s)
Environmental Pollutants , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Trinitrotoluene , Polycyclic Aromatic Hydrocarbons/metabolism , Trinitrotoluene/metabolism , Bacteria , Biodegradation, Environmental , Environmental Pollutants/metabolism , Soil Microbiology , Soil Pollutants/metabolism
11.
Nanomaterials (Basel) ; 12(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36144980

ABSTRACT

A one-pot green method for aqueous synthesis of fluorescent copper sulphide nanoparticles (NPs) was developed. The reaction was carried out in borax-citrate buffer at physiological pH, 37 °C, aerobic conditions and using Cu (II) and the biological thiol cysteine. NPs exhibit green fluorescence with a peak at 520 nm when excited at 410 nm and an absorbance peak at 410 nm. A size between 8-12 nm was determined by dynamic light scattering and transmission electron microscopy. An interplanar atomic distance of (3.5 ± 0.1) Å and a hexagonal chalcocite crystalline structure (ßCh) of Cu2S NPs were also determined (HR-TEM). Furthermore, FTIR analyses revealed a Cu-S bond and the presence of organic molecules on NPs. Regarding toxicity, fluorescent Cu2S NPs display high biocompatibility when tested in cell lines and bacterial strains. Electrocatalytic activity of Cu2S NPs as counter electrodes was evaluated, and the best value of charge transfer resistance (Rct) was obtained with FTO/Cu2S (four layers). Consequently, the performance of biomimetic Cu2S NPs as counter electrodes in photovoltaic devices constructed using different sensitizers (ruthenium dye or CdTe NPs) and electrolytes (S2-/Sn2- or I-/I3-) was successfully checked. Altogether, novel characteristics of copper sulfide NPs such as green, simple, and inexpensive production, spectroscopic properties, high biocompatibility, and particularly their electrochemical performance, validate its use in different biotechnological applications.

12.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36015134

ABSTRACT

The rapid emergence and spread of new variants of coronavirus type 2, as well as the emergence of zoonotic viruses, highlights the need for methodologies that contribute to the search for new pharmacological treatments. In the present work, we searched for new SARS-CoV-2 papain-like protease inhibitors in the PubChem database, which has more than 100 million compounds. Based on the ligand efficacy index obtained by molecular docking, 500 compounds with higher affinity than another experimentally tested inhibitor were selected. Finally, the seven compounds with ADME parameters within the acceptable range for such a drug were selected. Next, molecular dynamics simulation studies at 200 ns, ΔG calculations using molecular mechanics with generalized Born and surface solvation, and quantum mechanical calculations were performed with the selected compounds. Using this in silico protocol, seven papain-like protease inhibitors are proposed: three compounds with similar free energy (D28, D04, and D59) and three compounds with higher binding free energy (D60, D99, and D06) than the experimentally tested inhibitor, plus one compound (D24) that could bind to the ubiquitin-binding region and reduce the effect on the host immune system. The proposed compounds could be used in in vitro assays, and the described protocol could be used for smart drug design.

13.
Genes (Basel) ; 13(8)2022 07 28.
Article in English | MEDLINE | ID: mdl-36011267

ABSTRACT

The nitroaromatic explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic and persistent environmental pollutant. Since physicochemical methods for remediation are poorly effective, the use of microorganisms has gained interest as an alternative to restore TNT-contaminated sites. We previously demonstrated the high TNT-transforming capability of three novel Pseudomonas spp. isolated from Deception Island, Antarctica, which exceeded that of the well-characterized TNT-degrading bacterium Pseudomonas putida KT2440. In this study, a comparative genomic analysis was performed to search for the metabolic functions encoded in the genomes of these isolates that might explain their TNT-transforming phenotype, and also to look for differences with 21 other selected pseudomonads, including xenobiotics-degrading species. Comparative analysis of xenobiotic degradation pathways revealed that our isolates have the highest abundance of key enzymes related to the degradation of fluorobenzoate, TNT, and bisphenol A. Further comparisons considering only TNT-transforming pseudomonads revealed the presence of unique genes in these isolates that would likely participate directly in TNT-transformation, and others involved in the ß-ketoadipate pathway for aromatic compound degradation. Lastly, the phylogenomic analysis suggested that these Antarctic isolates likely represent novel species of the genus Pseudomonas, which emphasizes their relevance as potential agents for the bioremediation of TNT and other xenobiotics.


Subject(s)
Pseudomonas putida , Trinitrotoluene , Antarctic Regions , Genomics , Pseudomonas/genetics , Pseudomonas/metabolism , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Trinitrotoluene/chemistry , Trinitrotoluene/metabolism , Xenobiotics/metabolism
14.
Int J Mol Sci ; 24(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36613844

ABSTRACT

Xenobiotic reductase B (XenB) catalyzes the reduction of the aromatic ring or nitro groups of nitroaromatic compounds with methyl, amino or hydroxyl radicals. This reaction is of biotechnological interest for bioremediation, the reuse of industrial waste or the activation of prodrugs. However, the structural factors that explain the binding of XenB to different substrates are unknown. Molecular dynamics simulations and quantum mechanical calculations were performed to identify the residues involved in the formation and stabilization of the enzyme/substrate complex and to explain the use of different substrates by this enzyme. Our results show that Tyr65 and Tyr335 residues stabilize the ligands through hydrophobic interactions mediated by the aromatic rings of these aminoacids. The higher XenB activity determined with the substrates 1,3,5-trinitrobenzene and 2,4,6-trinitrotoluene is consistent with the lower energy of the highest occupied molecular orbital (LUMO) orbitals and a lower energy of the homo orbital (LUMO), which favors electrophile and nucleophilic activity, respectively. The electrostatic potential maps of these compounds suggest that the bonding requires a large hydrophobic region in the aromatic ring, which is promoted by substituents in ortho and para positions. These results are consistent with experimental data and could be used to propose point mutations that allow this enzyme to process new molecules of biotechnological interest.


Subject(s)
Pseudomonas putida , Trinitrotoluene , Oxidoreductases/metabolism , Pseudomonas putida/metabolism , Xenobiotics , Trinitrotoluene/chemistry , Trinitrotoluene/metabolism , Molecular Dynamics Simulation
15.
Biomed Pharmacother ; 140: 111764, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34051617

ABSTRACT

Cocoa beans contain antioxidant molecules with the potential to inhibit type 2 coronavirus (SARS-CoV-2), which causes a severe acute respiratory syndrome (COVID-19). In particular, protease. Therefore, using in silico tests, 30 molecules obtained from cocoa were evaluated. Using molecular docking and quantum mechanics calculations, the chemical properties and binding efficiency of each ligand was evaluated, which allowed the selection of 5 compounds of this series. The ability of amentoflavone, isorhoifolin, nicotiflorin, naringin and rutin to bind to the main viral protease was studied by means of free energy calculations and structural analysis performed from molecular dynamics simulations of the enzyme/inhibitor complex. Isorhoifolin and rutin stand out, presenting a more negative binding ΔG than the reference inhibitor N-[(5-methylisoxazol-3-yl)carbonyl]alanyl-l-valyl-N~1~-((1R,2Z)-4-(benzyloxy)-4-oxo-1-{[(3R)-2-oxopyrrolidin-3-yl]methyl}but-2-enyl)-L-leucinamide (N3). These results are consistent with high affinities of these molecules for the major SARS-CoV-2. The results presented in this paper are a solid starting point for future in vitro and in vivo experiments aiming to validate these molecules and /or test similar substances as inhibitors of SARS-CoV-2 protease.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Cacao/chemistry , Peptide Hydrolases/metabolism , Plant Preparations/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Humans , Ligands , Molecular Dynamics Simulation
16.
Genes (Basel) ; 12(2)2021 01 27.
Article in English | MEDLINE | ID: mdl-33514061

ABSTRACT

Here, we present the draft genome sequence of Pseudomonas sp. GC01, a cadmium-resistant Antarctic bacterium capable of biosynthesizing CdS fluorescent nanoparticles (quantum dots, QDs) employing a unique mechanism involving the production of methanethiol (MeSH) from methionine (Met). To explore the molecular/metabolic components involved in QDs biosynthesis, we conducted a comparative genomic analysis, searching for the genes related to cadmium resistance and sulfur metabolic pathways. The genome of Pseudomonas sp. GC01 has a 4,706,645 bp size with a 58.61% G+C content. Pseudomonas sp. GC01 possesses five genes related to cadmium transport/resistance, with three P-type ATPases (cadA, zntA, and pbrA) involved in Cd-secretion that could contribute to the extracellular biosynthesis of CdS QDs. Furthermore, it exhibits genes involved in sulfate assimilation, cysteine/methionine synthesis, and volatile sulfur compounds catabolic pathways. Regarding MeSH production from Met, Pseudomonas sp. GC01 lacks the genes E4.4.1.11 and megL for MeSH generation. Interestingly, despite the absence of these genes, Pseudomonas sp. GC01 produces high levels of MeSH. This is probably associated with the metC gene that also produces MeSH from Met in bacteria. This work is the first report of the potential genes involved in Cd resistance, sulfur metabolism, and the process of MeSH-dependent CdS QDs bioproduction in Pseudomonas spp. strains.


Subject(s)
Genome, Bacterial , Genomics , Pseudomonas/genetics , Pseudomonas/metabolism , Adaptation, Biological/genetics , Cadmium/metabolism , Cadmium/toxicity , Cadmium Compounds/chemistry , Computational Biology/methods , Genomics/methods , Metabolic Networks and Pathways , Methionine/metabolism , Models, Biological , Nanoparticles , Phylogeny , Pseudomonas/classification , Sulfides/chemistry
17.
Microorganisms ; 8(11)2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33171767

ABSTRACT

Diesel oil is the main source of energy used in Antarctica. Since diesel is composed of toxic compounds such as polycyclic aromatic hydrocarbons (PAHs) and heavy metals, it represents a constant threat to the organisms inhabiting this continent. In the present study, we characterized the chemical and biological parameters of diesel-exposed soils obtained from King George Island in Antarctica. Contaminated soils present PAH concentrations 1000 times higher than non-exposed soils. Some contaminated soil samples also exhibited high concentrations of cadmium and lead. A 16S metagenome analysis revealed the effect of co-contamination on bacterial communities. An increase in the relative abundance of bacteria known as PAH degraders or metal resistant was determined in co-contaminated soils. Accordingly, the soil containing higher amounts of PAHs exhibited increased dehydrogenase activity than control soils, suggesting that the microorganisms present can metabolize diesel. The inhibitory effect on soil metabolism produced by cadmium was lower in diesel-contaminated soils. Moreover, diesel-contaminated soils contain higher amounts of cultivable heterotrophic, cadmium-tolerant, and PAH-degrading bacteria than control soils. Obtained results indicate that diesel contamination at King George island has affected microbial communities, favoring the presence of microorganisms capable of utilizing PAHs as a carbon source, even in the presence of heavy metals.

18.
Environ Pollut ; 262: 113922, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32443190

ABSTRACT

2,4,6-Trinitrotoluene (TNT) is a nitroaromatic explosive, highly toxic and mutagenic for organisms. In this study, we report for the first time the screening and isolation of TNT-degrading bacteria from Antarctic environmental samples with potential use as bioremediation agents. Ten TNT-degrading bacterial strains were isolated from Deception Island. Among them, Pseudomonas sp. TNT3 was selected as the best candidate since it showed the highest tolerance, growth, and TNT biotransformation capabilities. Our results showed that TNT biotransformation involves the reduction of the nitro groups. Additionally, Pseudomonas sp. TNT3 was capable of transforming 100 mg/L TNT within 48 h at 28 °C, showing higher biotransformation capability than Pseudomonas putida KT2440, a known TNT-degrading bacterium. Functional annotation of Pseudomonas sp. TNT3 genome revealed a versatile set of molecular functions involved in xenobiotic degradation pathways. Two putative xenobiotic reductases (XenA_TNT3 and XenB_TNT3) were identified by means of homology searches and phylogenetic relationships. These enzymes were also characterized at molecular level using homology modelling and molecular dynamics simulations. Both enzymes share different levels of sequence similarity with other previously described TNT-degrading enzymes and with their closest potential homologues in databases.


Subject(s)
Trinitrotoluene , Antarctic Regions , Biodegradation, Environmental , Biotransformation , Islands , Phylogeny , Pseudomonas
19.
Front Chem ; 8: 595097, 2020.
Article in English | MEDLINE | ID: mdl-33614592

ABSTRACT

The pandemic that started in Wuhan (China) in 2019 has caused a large number of deaths, and infected people around the world due to the absence of effective therapy against coronavirus 2 of the severe acute respiratory syndrome (SARS-CoV-2). Viral maturation requires the activity of the main viral protease (Mpro), so its inhibition stops the progress of the disease. To evaluate possible inhibitors, a computational model of the SARS-CoV-2 enzyme Mpro was constructed in complex with 26 synthetic ligands derived from coumarins and quinolines. Analysis of simulations of molecular dynamics and molecular docking of the models show a high affinity for the enzyme (∆E binding between -5.1 and 7.1 kcal mol-1). The six compounds with the highest affinity show K d between 6.26 × 10-6 and 17.2 × 10-6, with binding affinity between -20 and -25 kcal mol-1, with ligand efficiency less than 0.3 associated with possible inhibitory candidates. In addition to the high affinity of these compounds for SARS-CoV-2 Mpro, low toxicity is expected considering the Lipinski, Veber and Pfizer rules. Therefore, this novel study provides candidate inhibitors that would allow experimental studies which can lead to the development of new treatments for SARS-CoV-2.

20.
J Chem Inf Model ; 59(9): 3860-3870, 2019 09 23.
Article in English | MEDLINE | ID: mdl-31454238

ABSTRACT

The nitro-explosive compounds 2,4,6-trinitrotoluene, 2,4,6-trinitrophenol, and 1,2,3-trinitroglycerol are persistent environmental contaminants. The presence of different functional groups in these molecules represents a great challenge to enzymatic catalysis. The chemical variety of these three substrates is such that they do not bind and interact with catalytic residues within an enzyme with the same affinity. In this context, two Xenobiotic Reductase enzymes produced by the bacteria Pseudomonas putida can catalyze the reduction of these compounds with different affinities and regioselectivity. The structural bases that support this substrate promiscuity and catalytic preferences are unknown. Therefore, through molecular dynamics simulations and free energy calculations, we explored the structural properties driving the specific interactions of these enzymes with their substrates and cofactor. Models of Xenobiotic Reductase A and B enzymes in complex with 2,4,6-trinitrotoluene, 2,4,6-trinitrophenol, or 1,2,3-trinitroglycerol were built, and the ligand enzyme interaction was simulated by molecular dynamics. The structural analysis of the molecular dynamics simulations shows that loops 3, 5, 7, 9, 11, and 13 of Xenobiotic Reductase B, and loops 4, 5, 7, 11, 13, and 15 Xenobiotic Reductase A, are in contact with the ligands during the first stages of the molecular recognition. These loops are the most flexible regions for both enzymes; however, Xenobiotic Reductase B presents a greater range of movement and a higher number of residues interacting with the ligands. Finally, the distance between the cofactor and the different reactive groups in the substrate reflects the regioselectivity of the enzymes, and the free energy calculations are consistent with the substrate specificity of both enzymes studied. The simulation shows a stable interaction between the aromatic ring of the substrates and Xenobiotic Reductase B. In contrast, a less stable interaction with the different nitro groups of the aromatic ligands was observed. In the case of 1,2,3-trinitroglycerol, Xenobiotic Reductase B interacts more closely with the nitro groups of carbon 1 or 3, while Xenobiotic Reductase A is more selective by nitro groups of carbon 2. The obtained results suggest that the flexibility of the loops in Xenobiotic Reductase B and the presence of polar and aromatic residues present in loops 5 and 7 are fundamental to determine the affinity of the enzyme with the different substrates, and they also contribute to the proper orientation of the ligands that directs the catalytic reaction.


Subject(s)
Bacterial Proteins/metabolism , Explosive Agents/chemistry , Explosive Agents/metabolism , Flavoproteins/metabolism , Molecular Dynamics Simulation , Nitro Compounds/chemistry , Nitro Compounds/metabolism , Oxidoreductases/metabolism , Bacterial Proteins/chemistry , Flavoproteins/chemistry , Oxidoreductases/chemistry , Protein Binding , Protein Conformation , Pseudomonas putida/enzymology , Stereoisomerism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...