Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Infect Dis ; 1(10): 479-86, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-27623314

ABSTRACT

Chemistry for the efficient modification of the kanamycin class of 4,6-aminoglycosides at the 4'-position is presented. In all kanamycins but kanamycin B, 4'-O-alkylation is strongly detrimental to antiribosomal and antibacterial activity. Ethylation of kanamycin B at the 4″-position entails little loss of antiribosomal and antibacterial activity, but no increase of ribosomal selectivity. These results are contrasted with those for the 4,5-aminoglycosides, where 4'-O-alkylation of paromomycin causes only a minimal loss of activity but results in a significant increase in selectivity with a concomitant loss of ototoxicity.

2.
mBio ; 5(5): e01827-14, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25271289

ABSTRACT

UNLABELLED: The emerging epidemic of drug resistance places the development of efficacious and safe antibiotics in the spotlight of current research. Here, we report the design of next-generation aminoglycosides. Discovery efforts were driven by rational synthesis focusing on 4' alkylations of the aminoglycoside paromomycin, with the goal to alleviate the most severe and disabling side effect of aminoglycosides-irreversible hearing loss. Compounds were evaluated for target activity in in vitro ribosomal translation assays, antibacterial potency against selected pathogens, cytotoxicity against mammalian cells, and in vivo ototoxicity. The results of this study produced potent compounds with excellent selectivity at the ribosomal target, promising antibacterial activity, and little, if any, ototoxicity upon chronic administration. The favorable biocompatibility profile combined with the promising antibacterial activity emphasizes the potential of next-generation aminoglycosides in the treatment of infectious diseases without the risk of ototoxicity. IMPORTANCE: The ever-widening epidemic of multidrug-resistant infectious diseases and the paucity of novel antibacterial agents emerging from modern screening platforms mandate the reinvestigation of established drugs with an emphasis on improved biocompatibility and overcoming resistance mechanisms. Here, we describe the preparation and evaluation of derivatives of the established aminoglycoside antibiotic paromomycin that effectively remove its biggest deficiency, ototoxicity, and overcome certain bacterial resistance mechanisms.


Subject(s)
Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Aminoglycosides/chemical synthesis , Animals , Anti-Bacterial Agents/chemical synthesis , Bacterial Infections/drug therapy , Escherichia coli/drug effects , Guinea Pigs , Hexosamines/chemical synthesis , Hexosamines/pharmacology , Male , Mice , Mice, Inbred ICR , Microbial Sensitivity Tests , NIH 3T3 Cells , Phylogeny , RNA, Ribosomal, 16S/genetics , Ribosomes/drug effects , Staphylococcus aureus/drug effects
3.
Nat Commun ; 5: 3112, 2014.
Article in English | MEDLINE | ID: mdl-24473108

ABSTRACT

Clinical use of 2-deoxystreptamine aminoglycoside antibiotics, which target the bacterial ribosome, is compromised by adverse effects related to limited drug selectivity. Here we present a series of 4',6'-O-acetal and 4'-O-ether modifications on glucopyranosyl ring I of aminoglycosides. Chemical modifications were guided by measuring interactions between the compounds synthesized and ribosomes harbouring single point mutations in the drug-binding site, resulting in aminoglycosides that interact poorly with the drug-binding pocket of eukaryotic mitochondrial or cytosolic ribosomes. Yet, these compounds largely retain their inhibitory activity for bacterial ribosomes and show antibacterial activity. Our data indicate that 4'-O-substituted aminoglycosides possess increased selectivity towards bacterial ribosomes and little activity for any of the human drug-binding pockets.


Subject(s)
Aminoglycosides/chemistry , Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Aminoglycosides/therapeutic use , Animals , Anti-Bacterial Agents/therapeutic use , Base Sequence , Cell-Free System , Crystallography, X-Ray , Disease Models, Animal , Drug Interactions , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Humans , Inhibitory Concentration 50 , Male , Mice , Microbial Sensitivity Tests , Molecular Sequence Data , Mycobacterium smegmatis/drug effects , Nucleic Acid Conformation , Protein Biosynthesis/drug effects , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , Ribosomes/metabolism , Sepsis/drug therapy , Staphylococcus aureus/drug effects
4.
Neurobiol Dis ; 56: 25-33, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23607938

ABSTRACT

Osteoprotegerin (OPG) is a key regulator of bone remodeling. Mutations and variations in the OPG gene cause many human diseases that are characterized by not only skeletal abnormalities but also poorly understood hearing loss: Paget's disease, osteoporosis, and celiac disease. To gain insight into the mechanisms of hearing loss in OPG deficiency, we studied OPG knockout (Opg(-/-)) mice. We show that they develop sensorineural hearing loss, in addition to conductive hearing loss due to abnormal middle-ear bones. OPG deficiency caused demyelination and degeneration of the cochlear nerve in vivo. It also activated ERK, sensitized spiral ganglion cells (SGC) to apoptosis, and inhibited proliferation and survival of cochlear stem cells in vitro, which could be rescued by treatment with exogenous OPG, an ERK inhibitor, or bisphosphonate. Our results demonstrate a novel role for OPG in the regulation of SGC survival, and suggest a mechanism for sensorineural hearing loss in OPG deficiency.


Subject(s)
Cochlear Nerve/pathology , Ear, Inner/pathology , Hearing Loss, Sensorineural/pathology , Nerve Degeneration/pathology , Osteoprotegerin/biosynthesis , Vestibulocochlear Nerve Diseases/pathology , Animals , Apoptosis/physiology , Cell Survival , Cells, Cultured , Cochlear Nerve/metabolism , Ear, Inner/metabolism , Enzyme-Linked Immunosorbent Assay , Hearing Loss, Sensorineural/metabolism , Immunohistochemistry , In Situ Hybridization , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Degeneration/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/physiology , Osteoprotegerin/genetics , Oxidative Stress/physiology , Paraffin Embedding , Phenotype , Plastic Embedding , Schwann Cells/metabolism , Spiral Ganglion/cytology , Vestibulocochlear Nerve Diseases/metabolism
5.
Proc Natl Acad Sci U S A ; 109(27): 10984-9, 2012 Jul 03.
Article in English | MEDLINE | ID: mdl-22699498

ABSTRACT

Aminoglycosides are potent antibacterials, but therapy is compromised by substantial toxicity causing, in particular, irreversible hearing loss. Aminoglycoside ototoxicity occurs both in a sporadic dose-dependent and in a genetically predisposed fashion. We recently have developed a mechanistic concept that postulates a key role for the mitochondrial ribosome (mitoribosome) in aminoglycoside ototoxicity. We now report on the surprising finding that apramycin, a structurally unique aminoglycoside licensed for veterinary use, shows little activity toward eukaryotic ribosomes, including hybrid ribosomes which were genetically engineered to carry the mitoribosomal aminoglycoside-susceptibility A1555G allele. In ex vivo cultures of cochlear explants and in the in vivo guinea pig model of chronic ototoxicity, apramycin causes only little hair cell damage and hearing loss but it is a potent antibacterial with good activity against a range of clinical pathogens, including multidrug-resistant Mycobacterium tuberculosis. These data provide proof of concept that antibacterial activity can be dissected from aminoglycoside ototoxicity. Together with 3D structures of apramycin-ribosome complexes at 3.5-Å resolution, our results provide a conceptual framework for further development of less toxic aminoglycosides by hypothesis-driven chemical synthesis.


Subject(s)
Aminoglycosides/toxicity , Bacterial Infections/drug therapy , Deafness/chemically induced , Mitochondria/drug effects , Nebramycin/analogs & derivatives , Ribosomes/drug effects , Animals , Anti-Bacterial Agents/toxicity , Bacteria/drug effects , Binding Sites/drug effects , Deafness/physiopathology , Drug Design , Gentamicins/toxicity , Guinea Pigs , HEK293 Cells , Hair Cells, Auditory/drug effects , Humans , Mice , Mitochondria/metabolism , Mutagenesis/physiology , Mycobacterium/drug effects , Nebramycin/chemistry , Nebramycin/toxicity , Organ Culture Techniques , Protein Biosynthesis/drug effects , Protein Biosynthesis/physiology , Pseudomonas aeruginosa/drug effects , Rabbits , Reticulocytes/cytology , Ribosomes/chemistry , Ribosomes/metabolism , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...