Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes Technol Ther ; 25(10): 677-688, 2023 10.
Article in English | MEDLINE | ID: mdl-37578778

ABSTRACT

Introduction: Multiple daily injection insulin therapy frequently fails to meet hospital glycemic goals and is prone to hypoglycemia. Automated insulin delivery (AID) with remote glucose monitoring offers a solution to these shortcomings. Research Design and Methods: In a single-arm multicenter pilot trial, we tested the feasibility, safety, and effectiveness of the Omnipod 5 AID System with real-time continuous glucose monitoring (CGM) for up to 10 days in hospitalized patients with insulin-requiring diabetes on nonintensive care unit medical-surgical units. Primary endpoints included the proportion of time in automated mode and percent time-in-range (TIR 70-180 mg/dL) among participants with >48 h of CGM data. Safety endpoints included incidence of severe hypoglycemia and diabetes-related ketoacidosis (DKA). Additional glycemic endpoints, CGM accuracy, and patient satisfaction were also explored. Results: Twenty-two participants were enrolled; 18 used the system for a total of 96 days (mean 5.3 ± 3.1 days per patient), and 16 had sufficient CGM data required for analysis. Median percent time in automated mode was 95% (interquartile range 92%-98%) for the 18 system users, and the 16 participants with >48 h of CGM data achieved an overall TIR of 68% ± 16%, with 0.17% ± 0.3% time <70 mg/dL and 0.06% ± 0.2% time <54 mg/dL. Sensor mean glucose was 167 ± 21 mg/dL. There were no DKA or severe hypoglycemic events. All participants reported satisfaction with the system at study end. Conclusions: The use of AID with a disposable tubeless patch-pump along with remote real-time CGM is feasible in the hospital setting. These results warrant further investigation in randomized trials.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Ketoacidosis , Hypoglycemia , Humans , Blood Glucose , Blood Glucose Self-Monitoring/methods , Diabetes Mellitus, Type 1/drug therapy , Feasibility Studies , Hypoglycemia/chemically induced , Hypoglycemia/prevention & control , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Insulin Infusion Systems , Insulin, Regular, Human/therapeutic use , Pilot Projects
2.
Endocr Connect ; 12(10)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37578799

ABSTRACT

Over the last few years, several exciting changes in continuous glucose monitoring (CGM) technology have expanded its use and made CGM the standard of care for patients with type 1 and type 2 diabetes using insulin therapy. Consequently, hospitals started to notice increased use of these devices in their hospitalized patients. Furthermore during the coronavirus disease 2019 (COVID) pandemic, there was a critical need for innovative approaches to glycemic monitoring, and several hospitals started to implement CGM protocols in their daily practice. Subsequently, a plethora of studies have demonstrated the efficacy and safety of CGM use in the hospital, leading to clinical practice guideline recommendations. Several studies have also suggested that CGM has the potential to become the standard of care for some hospitalized patients, overcoming the limitations of current capillary glucose testing. Albeit, there is a need for more studies and particularly regulatory approval. In this review, we provide a historical overview of the evolution of glycemic monitoring in the hospital and review the current evidence, implementation protocols, and guidance for the use of CGM in hospitalized patients.

3.
J Diabetes Sci Technol ; 17(3): 667-678, 2023 05.
Article in English | MEDLINE | ID: mdl-37081830

ABSTRACT

Traditionally, the care of critically ill patients with diabetes or stress hyperglycemia in the intensive care unit (ICU) demands the use of continuous intravenous insulin (CII) therapy to achieve narrow glycemic targets. To reduce the risk of iatrogenic hypoglycemia and to achieve glycemic targets during CII, healthcare providers (HCP) rely on hourly point-of-care (POC) arterial or capillary glucose tests obtained with glucose monitors. The burden of this approach, however, was evident during the beginning of the pandemic when the immediate reduction in close contact interactions between HCP and patients with COVID-19 was necessary to avoid potentially life-threatening exposures. Taking advantage of the advancements in current diabetes technologies, including continuous glucose monitoring (CGM) devices integrated with digital health tools for remote monitoring, HCP implemented novel protocols in the ICU to care for patients with COVID-19 and hyperglycemia. We provide an overview of research conducted in the ICU setting with the use of initial CGM technology to current devices and summarize our recent experience in the ICU.


Subject(s)
COVID-19 , Diabetes Mellitus , Hyperglycemia , Humans , Blood Glucose , Blood Glucose Self-Monitoring/methods , Insulin , Intensive Care Units , Insulin, Regular, Human
4.
Diabetes Care ; 45(10): 2369-2375, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35984478

ABSTRACT

OBJECTIVE: The efficacy and safety of continuous glucose monitoring (CGM) in adjusting inpatient insulin therapy have not been evaluated. RESEARCH DESIGN AND METHODS: This randomized trial included 185 general medicine and surgery patients with type 1 and type 2 diabetes treated with a basal-bolus insulin regimen. All subjects underwent point-of-care (POC) capillary glucose testing before meals and bedtime. Patients in the standard of care (POC group) wore a blinded Dexcom G6 CGM with insulin dose adjusted based on POC results, while in the CGM group, insulin adjustment was based on daily CGM profile. Primary end points were differences in time in range (TIR; 70-180 mg/dL) and hypoglycemia (<70 mg/dL and <54 mg/dL). RESULTS: There were no significant differences in TIR (54.51% ± 27.72 vs. 48.64% ± 24.25; P = 0.14), mean daily glucose (183.2 ± 40 vs. 186.8 ± 39 mg/dL; P = 0.36), or percent of patients with CGM values <70 mg/dL (36% vs. 39%; P = 0.68) or <54 mg/dL (14 vs. 24%; P = 0.12) between the CGM-guided and POC groups. Among patients with one or more hypoglycemic events, compared with POC, the CGM group experienced a significant reduction in hypoglycemia reoccurrence (1.80 ± 1.54 vs. 2.94 ± 2.76 events/patient; P = 0.03), lower percentage of time below range <70 mg/dL (1.89% ± 3.27 vs. 5.47% ± 8.49; P = 0.02), and lower incidence rate ratio <70 mg/dL (0.53 [95% CI 0.31-0.92]) and <54 mg/dL (0.37 [95% CI 0.17-0.83]). CONCLUSIONS: The inpatient use of real-time Dexcom G6 CGM is safe and effective in guiding insulin therapy, resulting in a similar improvement in glycemic control and a significant reduction of recurrent hypoglycemic events compared with POC-guided insulin adjustment.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemia , Blood Glucose , Blood Glucose Self-Monitoring/methods , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/drug therapy , Glucose , Glycated Hemoglobin/analysis , Humans , Hypoglycemia/chemically induced , Hypoglycemia/drug therapy , Hypoglycemic Agents , Insulin , Insulin, Regular, Human
5.
Endocrinol Metab (Seoul) ; 36(2): 240-255, 2021 04.
Article in English | MEDLINE | ID: mdl-33789033

ABSTRACT

Continuous glucose monitors (CGMs) have suddenly become part of routine care in many hospitals. The coronavirus disease 2019 (COVID-19) pandemic has necessitated the use of new technologies and new processes to care for hospitalized patients, including diabetes patients. The use of CGMs to automatically and remotely supplement or replace assisted monitoring of blood glucose by bedside nurses can decrease: the amount of necessary nursing exposure to COVID-19 patients with diabetes; the amount of time required for obtaining blood glucose measurements, and the amount of personal protective equipment necessary for interacting with patients during the blood glucose testing. The United States Food and Drug Administration (FDA) is now exercising enforcement discretion and not objecting to certain factory-calibrated CGMs being used in a hospital setting, both to facilitate patient care and to obtain performance data that can be used for future regulatory submissions. CGMs can be used in the hospital to decrease the frequency of fingerstick point of care capillary blood glucose testing, decrease hyperglycemic episodes, and decrease hypoglycemic episodes. Most of the research on CGMs in the hospital has focused on their accuracy and only recently outcomes data has been reported. A hospital CGM program requires cooperation of physicians, bedside nurses, diabetes educators, and hospital administrators to appropriately select and manage patients. Processes for collecting, reviewing, storing, and responding to CGM data must be established for such a program to be successful. CGM technology is advancing and we expect that CGMs will be increasingly used in the hospital for patients with diabetes.


Subject(s)
Blood Glucose Self-Monitoring/trends , Blood Glucose/metabolism , COVID-19/epidemiology , Diabetes Mellitus/blood , Diabetes Mellitus/epidemiology , Hospitals/trends , Blood Glucose Self-Monitoring/methods , COVID-19/prevention & control , Humans , Hypoglycemia/blood , Hypoglycemia/epidemiology , Hypoglycemia/prevention & control , Monitoring, Ambulatory/methods , Monitoring, Ambulatory/trends
SELECTION OF CITATIONS
SEARCH DETAIL
...