Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Open Res Eur ; 2: 105, 2022.
Article in English | MEDLINE | ID: mdl-37645283

ABSTRACT

Background: This work studied the use of the organic fertilizers DTPA-Fe and EDDS-Fe as iron chelates for solar driven photo-Fenton process at natural pH. This process was proposed to investigate its performance on removing a mixture of agrochemicals (propiconazole, imidacloprid and diuron) from pineapple processing wastewater to obtain a suitable effluent to be reused in the agricultural sector. Methods: Experiments were carried out in a solar simulator with a stirred cylindric photoreactor, with a volume of 150 mL and controlled temperature (20°C). The first set of experiments was carried out with ultrapure water to determine optimal iron and H 2O 2 concentrations. The second was performed with simulated wastewater of pineapple processing. Results: The optimized operational conditions for both iron complexes were 10 mg L -1 of Fe (III) and 25 mg L -1 of H 2O 2, since more than 80% of micropollutants (MP) (at an initial concentration of 1 mg L -1 of each compound) were removed in only 20 min with both DTPA-Fe and EDDS-Fe. The effect of organic matter and inorganic salts on radicals scavenging and chelates stability was also investigated in the experiments performed with synthetic pineapple processing wastewater. The results disclosed differences depending on the iron complex. Nitrites were the principal component influencing the tests carried out with EDDS-Fe. While carbonates at low concentration only significantly affected the experiments performed with DTPA-Fe, they were the major influence on the MPs removal efficiency decrease. In contrast, the presence of Ca 2+ and Mg 2+ only influence on this last one. Finally, the results of phytotoxicity disclosed the suitability of treated effluent to be reused in the agricultural sector.  Conclusions: This work demonstrated that solar powered photo-Fenton catalysed by iron fertilizer EDDS is a suitable technology for depolluting water streams coming from pineapple processing plants at circumneutral pH, and its subsequent reuse for crop irrigation.

3.
Sci Total Environ ; 765: 144438, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33418332

ABSTRACT

Source-separating sanitation systems offer the possibility of recycling nutrients present in wastewater as crop fertilisers. Thereby, they can reduce agriculture's impacts on global sources, sinks, and cycles for nitrogen and phosphorous, as well as their associated environmental costs. However, it has been broadly assumed that people would be reluctant to perform the new sanitation behaviours that are necessary for implementing such systems in practice. Yet, few studies have tried to systematically gather evidence in support of this assumption. To address this gap, we surveyed 3763 people at 20 universities in 16 countries using a standardised questionnaire. We identified and systematically assessed cross-cultural and country-level explanatory factors that were strongly associated with people's willingness to consume food grown using human urine as fertiliser. Overall, 68% of the respondents favoured recycling human urine, 59% stated a willingness to eat urine-fertilised food, and only 11% believed that urine posed health risks that could not be mitigated by treatment. Most people did not expect to pay less for urine-fertilised food, but only 15% were willing to pay a price premium. Consumer perceptions were found to differ greatly by country and the strongest predictive factors for acceptance overall were cognitive factors (perceptions of risks and benefits) and social norms. Increasing awareness and building trust among consumers about the effectiveness of new sanitation systems via cognitive and normative messaging can help increase acceptance. Based on our findings, we believe that in many countries, acceptance by food consumers will not be the major social barrier to closing the loop on human urine. That a potential market exists for urine-fertilised food, however, needs to be communicated to other stakeholders in the sanitation service chain.


Subject(s)
Fertilizers , Recycling , Consumer Behavior , Food , Humans , Surveys and Questionnaires , Wastewater
4.
Int J Environ Health Res ; 31(4): 355-373, 2021 Jun.
Article in English | MEDLINE | ID: mdl-31475566

ABSTRACT

Wastewater irrigation is a common practice in developing countries due to water scarcity and increasing demand for food production. However, there are health risks and ecological risks associated with this practice. Small-scale wastewater treatment plants (WWTPs) intend to decrease these risks but still face management challenges. This study assessed how the management status of five small-scale WWTPs in Cochabamba, Bolivia affects health risks associated with consumption of lettuce and ecological risks due to the accumulation of nutrients in the soil for lettuce and maize crops. Risk simulations for three wastewater irrigation scenarios were: raw wastewater, actual effluent and expected effluent. Results showed that weak O&M practices can increase risk outcomes to higher levels than irrigating with raw wastewater. Improving O&M to achieve optimal functioning of small-scale WWTPs can reduce human health risks and ecological risks up to 2 log10 DALY person-1 year-1 and to 2 log10 kg nitrogen ha-1 accumulated in soil, respectively.


Subject(s)
Agricultural Irrigation/statistics & numerical data , Developing Countries/statistics & numerical data , Waste Disposal, Fluid/statistics & numerical data , Wastewater/analysis , Water Purification/statistics & numerical data , Bolivia , Humans
5.
J Environ Manage ; 248: 109295, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31376612

ABSTRACT

Microbial contamination of vegetables due to irrigation with wastewater-polluted streams is a common problem around most cities in developing countries because wastewater is an available source of water and nutrients but wastewater treatment is often inadequate. On-farm treatment of polluted water is a feasible option to manage microbial risks in a multi-barrier approach. Current evidence indicates good suitability of biochar filters for microbe removal from wastewater using the hydraulic loading rate (HLR) designed for sand filters, but their suitability has not been tested under on-farm conditions. This study evaluated the combined effect of several variables on removal of microbial indicators from diluted wastewater by biochar filtration on-farm and the correlations between removal efficiency and HLR. Columns of biochar with three different effective particle diameters (d10) were fed with diluted wastewater at 1x, 6x, and 12x the design HLR and two levels of water salinity (electrical conductivity, EC). Influent and effluent samples were collected from the columns and analyzed for bacteriophages (ɸX174 and MS2), Escherichia coli, Enterococcus spp., and Saccharomyces cerevisiae. Microbe removal decreased with increasing HLR, from 2 to 4 to 1 log10 for bacteria and from 2 to 0.8 log10 for viruses, while S. cerevisiae removal was unaffected. Effective particle diameter (d10) was the main variable explaining microbe removal at 6x and 12x, while EC had no effect. Correlation analysis showed removal of 2 log10 bacteria and 1 log10 virus at 3x HLR. Thus biochar filters on-farm would not remove significant amounts of bacteria and viruses. However, the design HLR was found to be conservative. These results, and some technical and management considerations identified, can assist in the development of a scientific method for designing biochar filters for on-farm and conventional wastewater treatment.


Subject(s)
Waste Disposal, Fluid , Wastewater , Charcoal , Farms , Filtration , Saccharomyces cerevisiae
6.
J Water Health ; 16(6): 980-990, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30540272

ABSTRACT

In dry areas, the need for irrigation to ensure agricultural production determines the use of all available water sources. However, the water sources used for irrigation are often contaminated by untreated or minimally treated wastewater. Microbial risks from reusing wastewater for vegetable irrigation can be addressed by installing environmental barriers that pathogens must cross to reach humans in the reuse system. Knowledge of pathogen flows inside the system and pathogen removal potential is the first step towards devising a risk management strategy. This study assessed microbe prevalence in farming systems in the Bolivian highlands that use wastewater-polluted sources for irrigation of lettuce. Samples of soil, lettuce and different water sources used in the farming systems were taken during one crop season and concentrations of coliphages, Escherichia coli and helminth eggs were measured. The results showed high spread of these microorganisms throughout the whole system. There was a significant correlation between microbial quality of water and of the harvested produce for several microorganisms. The microbial prevalence in protected shallow wells was found to be significantly lower than in other water sources. These findings can help formulate feasible risk management strategies in contexts where conventional technologies for microbial removal are not possible.


Subject(s)
Agricultural Irrigation , Soil Microbiology , Wastewater , Water Microbiology , Bolivia , Crop Production , Humans , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...