Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(28): e2400737121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968127

ABSTRACT

In recent years, the exploration of genome three-dimensional (3D) conformation has yielded profound insights into the regulation of gene expression and cellular functions in both animals and plants. While animals exhibit a characteristic genome topology defined by topologically associating domains (TADs), plants display similar features with a more diverse conformation across species. Employing advanced high-throughput sequencing and microscopy techniques, we investigated the landscape of 26 histone modifications and RNA polymerase II distribution in tomato (Solanum lycopersicum). Our study unveiled a rich and nuanced epigenetic landscape, shedding light on distinct chromatin states associated with heterochromatin formation and gene silencing. Moreover, we elucidated the intricate interplay between these chromatin states and the overall topology of the genome. Employing a genetic approach, we delved into the role of the histone modification H3K9ac in genome topology. Notably, our investigation revealed that the ectopic deposition of this chromatin mark triggered a reorganization of the 3D chromatin structure, defining different TAD-like borders. Our work emphasizes the critical role of H3K9ac in shaping the topology of the tomato genome, providing valuable insights into the epigenetic landscape of this agriculturally significant crop species.


Subject(s)
Epigenome , Histones , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Histones/metabolism , Histones/genetics , Epigenesis, Genetic , Genome, Plant , Chromatin/metabolism , Chromatin/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Heterochromatin/metabolism , Heterochromatin/genetics , Histone Code/genetics
2.
Physiol Plant ; 176(4): e14388, 2024.
Article in English | MEDLINE | ID: mdl-38946634

ABSTRACT

Plants can experience a variety of environmental stresses that significantly impact their fitness and survival. Additionally, biotic stress can harm agriculture, leading to reduced crop yields and economic losses worldwide. As a result, plants have developed defense strategies to combat potential invaders. These strategies involve regulating redox homeostasis. Several studies have documented the positive role of plant antioxidants, including Ascorbate (Asc), under biotic stress conditions. Asc is a multifaceted antioxidant that scavenges ROS, acts as a co-factor for different enzymes, regulates gene expression, and facilitates iron transport. However, little attention has been given to Asc and its transport, regulatory effects, interplay with phytohormones, and involvement in defense processes under biotic stress. Asc interacts with other components of the redox system and phytohormones to activate various defense responses that reduce the growth of plant pathogens and promote plant growth and development under biotic stress conditions. Scientific reports indicate that Asc can significantly contribute to plant resistance against biotic stress through mutual interactions with components of the redox and hormonal systems. This review focuses on the role of Asc in enhancing plant resistance against pathogens. Further research is necessary to gain a more comprehensive understanding of the molecular and cellular regulatory processes involved.


Subject(s)
Ascorbic Acid , Plant Growth Regulators , Plants , Stress, Physiological , Plant Growth Regulators/metabolism , Ascorbic Acid/metabolism , Plants/metabolism , Plants/immunology , Antioxidants/metabolism , Oxidation-Reduction , Gene Expression Regulation, Plant , Plant Diseases/immunology , Plant Diseases/microbiology
3.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473859

ABSTRACT

The use of gene-editing tools, such as zinc finger nucleases, TALEN, and CRISPR/Cas, allows for the modification of physiological, morphological, and other characteristics in a wide range of crops to mitigate the negative effects of stress caused by anthropogenic climate change or biotic stresses. Importantly, these tools have the potential to improve crop resilience and increase yields in response to challenging environmental conditions. This review provides an overview of gene-editing techniques used in plants, focusing on the cultivated tomatoes. Several dozen genes that have been successfully edited with the CRISPR/Cas system were selected for inclusion to illustrate the possibilities of this technology in improving fruit yield and quality, tolerance to pathogens, or responses to drought and soil salinity, among other factors. Examples are also given of how the domestication of wild species can be accelerated using CRISPR/Cas to generate new crops that are better adapted to the new climatic situation or suited to use in indoor agriculture.


Subject(s)
Gene Editing , Solanum lycopersicum , Gene Editing/methods , Genome, Plant , CRISPR-Cas Systems , Crops, Agricultural/genetics , Plant Breeding
4.
Theor Appl Genet ; 137(4): 76, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459215

ABSTRACT

The use of tomato rootstocks has helped to alleviate the soaring abiotic stresses provoked by the adverse effects of climate change. Lateral and adventitious roots can improve topsoil exploration and nutrient uptake, shoot biomass and resulting overall yield. It is essential to understand the genetic basis of root structure development and how lateral and adventitious roots are produced. Existing mutant lines with specific root phenotypes are an excellent resource to analyse and comprehend the molecular basis of root developmental traits. The tomato aerial roots (aer) mutant exhibits an extreme adventitious rooting phenotype on the primary stem. It is known that this phenotype is associated with restricted polar auxin transport from the juvenile to the more mature stem, but prior to this study, the genetic loci responsible for the aer phenotype were unknown. We used genomic approaches to define the polygenic nature of the aer phenotype and provide evidence that increased expression of specific auxin biosynthesis, transport and signalling genes in different loci causes the initiation of adventitious root primordia in tomato stems. Our results allow the selection of different levels of adventitious rooting using molecular markers, potentially contributing to rootstock breeding strategies in grafted vegetable crops, especially in tomato. In crops vegetatively propagated as cuttings, such as fruit trees and cane fruits, orthologous genes may be useful for the selection of cultivars more amenable to propagation.


Subject(s)
Indoleacetic Acids , Solanum lycopersicum , Indoleacetic Acids/metabolism , Solanum lycopersicum/genetics , Plant Breeding , Signal Transduction , Phenotype , Plant Roots
5.
Planta ; 259(3): 66, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332379

ABSTRACT

MAIN CONCLUSION: Optimal levels of indole-3-butyric acid (IBA) applied at the stem base promote adventitious root (AR) initiation and primordia formation, thus promoting the rooting of leafy micro-cuttings of tetraploid Robinia pseudoacacia. Tetraploid Robinia pseudoacacia L. is a widely cultivated tree in most regions of China that has a hard-rooting capability, propagated by stem cuttings. This study utilizes histological, physiological, and transcriptomic approaches to explore how root primordia are induced after indole butyric acid (IBA) treatment of micro-cuttings. IBA application promoted cell divisions in some cells within the vasculature, showing subcellular features associated with adventitious root (AR) founder cells. The anatomical structure explicitly showed that AR initiated from the cambium layer and instigate the inducible development of AR primordia. Meanwhile, the hormone data showed that similar to that of indole-3-acetic acid, the contents of trans-zeatin and abscisic acid peaked at early stages of AR formation and increased gradually in primordia formation across the subsequent stages, suggesting their indispensable roles in AR induction. On the contrary, 24-epibrassinolide roughly maintained at extremely high levels during primordium initiation thoroughly, indicating its presence was involved in cell-specific reorganization during AR development. Furthermore, antioxidant activities transiently increased in the basal region of micro-cuttings and may serve as biochemical indicators for distinct rooting phases, potentially aiding in AR formation. Transcriptomic analysis during the early stages of root formation shows significant downregulation of the abscisic acid and jasmonate signaling pathways, while ethylene and cytokinin signaling seems upregulated. Network analysis of genes involved in carbon metabolism and photosynthesis indicates that the basal region of the micro-cuttings undergoes rapid reprogramming, which results in the breakdown of sugars into pyruvate. This pyruvate is then utilized to fuel the tricarboxylic acid cycle, thereby sustaining growth through aerobic respiration. Collectively, our findings provide a time-course morphophysiological dissection and also suggest the regulatory role of a conserved auxin module in AR development in these species.


Subject(s)
Abscisic Acid , Robinia , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Robinia/genetics , Tetraploidy , Indoleacetic Acids/metabolism , Gene Expression Profiling , Pyruvates/metabolism , Plant Roots/metabolism
6.
Planta ; 258(4): 76, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37670114

ABSTRACT

MAIN CONCLUSION: Root development is regulated by sucrose and light during early seedling establishment through changes in the auxin response and chromatin topology. Light is a key environmental signal that regulates plant growth and development. The impact of light on development is primarily analyzed in the above-ground tissues, but little is known about the mechanisms by which light shapes the architecture of underground roots. Our study shows that carbohydrate starvation during skotomorphogenesis is accompanied by compaction of nuclei in the root apical meristem, which prevents cell cycle progression and leads to irreversible root differentiation in the absence of external carbohydrates, as evidenced by the lack of DNA replication and increased numbers of nuclei with specific chromatin characteristics. In these conditions, induction of photomorphogenesis was unable to restore seedling growth, as overall root growth was compromised. The addition of carbohydrates, either locally or systemically by transferring seedlings to sugar-containing medium, led to the induction of adventitious root formation with rapid recovery of seedling growth. Conversely, transferring in vitro carbohydrate-grown seedlings from light to dark transiently promoted cell elongation and significantly reduced root meristem size, but did not primarily affect cell cycle kinetics. We show that, in the presence of sucrose, dark incubation does not affect zonation in the root apical meristem but leads to shortening of the proliferative and transition zones. Sugar starvation led to a rapid increase in lysine demethylation of histone H3 at position K9, which preceded a rapid decline in cell cycle activity and activation of cell differentiation. In conclusion, carbohydrates are required for cell cycle activity, epigenetics reprogramming and for postmitotic cell elongation and auxin-regulated response in the root apical meristem.


Subject(s)
Arabidopsis , Seedlings , Sucrose , Chromatin , Indoleacetic Acids
7.
Plants (Basel) ; 12(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37631154

ABSTRACT

Cultivated tomato (Solanum lycopersicum L.) is one of the most important horticultural crops in the world. The optimization of culture media for callus formation and tissue regeneration of different tomato genotypes presents numerous biotechnological applications. In this work, we have analyzed the effect of different concentrations of zeatin and indole-3-acetic acid on the regeneration of cotyledon explants in tomato cultivars M82 and Micro-Tom. We evaluated regeneration parameters such as the percentage of callus formation and the area of callus formed, as well as the initiation percentage and the number of adventitious shoots. The best hormone combination produced shoot-like structures after 2-3 weeks. We observed the formation of leaf primordia from these structures after about 3-4 weeks. Upon transferring the regenerating micro-stems to a defined growth medium, it was possible to obtain whole plantlets between 4 and 6 weeks. This hormone combination was applied to other genotypes of S. lycopersicum, including commercial varieties and ancestral tomato varieties. Our method is suitable for obtaining many plantlets of different tomato genotypes from cotyledon explants in a very short time, with direct applications for plant transformation, use of gene editing techniques, and vegetative propagation of elite cultivars.

8.
Plant J ; 114(1): 83-95, 2023 04.
Article in English | MEDLINE | ID: mdl-36700340

ABSTRACT

Reactive oxygen species (ROS) play a dual role in plant biology, acting as important signal transduction molecules and as toxic byproducts of aerobic metabolism that accumulate in cells upon exposure to different stressors and lead to cell death. In plants, root architecture is regulated by the distribution and intercellular flow of the phytohormone auxin. In this study, we identified ROS as an important modulator of auxin distribution and response in the root. ROS production is necessary for root growth, proper tissue patterning, cell growth, and lateral root (LR) induction. Alterations in ROS balance led to altered auxin distribution and response in SOD and RHD2 loss-of-function mutants. Treatment of Arabidopsis seedlings with additional sources of ROS (hydrogen peroxide) or an ROS production inhibitor (diphenylene iodonium) induced phenocopies of the mutants studied. Simultaneous application of auxin and ROS increased LR primordia induction, and PIN-FORMED protein immunolocalization further demonstrated the existing link between auxin and ROS in orchestrating cell division and auxin flux during root development. In Arabidopsis roots, genetic alterations in ROS balance led to defective auxin distribution and growth-related responses in roots. Exogenous hydrogen peroxide alters the establishment of the endogenous auxin gradient in the root meristem through regulation of PIN-FORMED polarity, while the simultaneous application of hydrogen peroxide and auxin enhanced LR induction in a dose- and position-dependent manner through activation of cell division.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Reactive Oxygen Species/metabolism , Indoleacetic Acids/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Roots/metabolism , Hydrogen Peroxide/metabolism , Gene Expression Regulation, Plant , NADPH Oxidases/metabolism
9.
Plant Cell Physiol ; 64(2): 152-164, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36398993

ABSTRACT

Removal of the root system induces the formation of new roots from the remaining shoot. This process is primarily controlled by the phytohormone auxin, which interacts with other signals in a yet unresolved manner. Here, we study the classical tomato mutation rosette (ro), which lacks shoot-borne roots. ro mutants were severely inhibited in formation of wound-induced roots (WiRs) and had reduced auxin transport rates. We mapped ro to the tomato ortholog of the Arabidopsis thaliana BIG and the mammalians UBR4/p600. RO/BIG is a large protein of unknown biochemical function. In A. thaliana, BIG was implicated in regulating auxin transport and calcium homeostasis. We show that exogenous calcium inhibits WiR formation in tomato and A. thaliana ro/big mutants. Exogenous calcium antagonized the root-promoting effects of the auxin indole-3-acetic-acid but not of 2,4-dichlorophenoxyacetic acid, an auxin analog that is not recognized by the polar transport machinery, and accumulation of the auxin transporter PIN-FORMED1 (PIN1) was sensitive to calcium levels in the ro/big mutants. Consistent with a role for calcium in mediating auxin transport, both ro/big mutants and calcium-treated wild-type plants were hypersensitive to treatment with polar auxin transport inhibitors. Subcellular localization of BIG suggests that, like its mammalian ortholog, it is associated with the endoplasmic reticulum. Analysis of subcellular morphology revealed that ro/big mutants exhibited disruption in cytoplasmic streaming. We suggest that RO/BIG maintains auxin flow by stabilizing PIN membrane localization, possibly by attenuating the inhibitory effect of Ca2+ on cytoplasmic streaming.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Animals , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Calcium/metabolism , Biological Transport , Indoleacetic Acids/metabolism , Mutation , Plant Roots/metabolism , Mammals/metabolism
10.
Plant Sci ; 326: 111525, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36328179

ABSTRACT

Prolonged cold stress has a strong effect on plant growth and development, especially in subtropical crops such as maize. Soil temperature limits primary root elongation, mainly during early seedling establishment. However, little is known about how moderate temperature fluctuations affect root growth at the molecular and physiological levels. We have studied root tips of young maize seedlings grown hydroponically at 30 ºC and after a short period (up to 24 h) of moderate cooling (20 ºC). We found that both cell division and cell elongation in the root apical meristem are affected by temperature. Time-course analyses of hormonal and transcriptomic profiles were achieved after temperature reduction from 30 ºC to 20 ºC. Our results highlighted a complex regulation of endogenous pathways leading to adaptive root responses to moderate cooling conditions.


Subject(s)
Seedlings , Zea mays , Zea mays/metabolism , Plant Roots , Meristem/genetics , Transcriptome
11.
Int J Mol Sci ; 23(24)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36555756

ABSTRACT

Some of the hormone crosstalk and transcription factors (TFs) involved in wound-induced organ regeneration have been extensively studied in the model plant Arabidopsis thaliana. In previous work, we established Solanum lycopersicum "Micro-Tom" explants without the addition of exogenous hormones as a model to investigate wound-induced de novo organ formation. The current working model indicates that cell reprogramming and founder cell activation requires spatial and temporal regulation of auxin-to-cytokinin (CK) gradients in the apical and basal regions of the hypocotyl combined with extensive metabolic reprogramming of some cells in the apical region. In this work, we extended our transcriptomic analysis to identify some of the gene regulatory networks involved in wound-induced organ regeneration in tomato. Our results highlight a functional conservation of key TF modules whose function is conserved during de novo organ formation in plants, which will serve as a valuable resource for future studies.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Solanum lycopersicum , Hypocotyl/genetics , Hypocotyl/metabolism , Solanum lycopersicum/genetics , Gene Regulatory Networks , Arabidopsis Proteins/genetics , Plant Roots/metabolism , Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Plants/metabolism , Gene Expression Regulation, Plant , Plant Shoots/metabolism
12.
Nat Plants ; 8(7): 729-730, 2022 07.
Article in English | MEDLINE | ID: mdl-35817822
13.
Plants (Basel) ; 11(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35406893

ABSTRACT

Several Prunus species are among the most important cultivated stone fruits in the Mediterranean region, and there is an urgent need to obtain rootstocks with specific adaptations to challenging environmental conditions. The development of adventitious roots (ARs) is an evolutionary mechanism of high relevance for stress tolerance, which has led to the development of environmentally resilient plants. As a first step towards understanding the genetic determinants involved in AR formation in Prunus sp., we evaluated the rooting of hardwood cuttings from five Prunus rootstocks (Adafuel, Adarcias, Cadaman, Garnem, and GF 677) grown in hydroponics. We found that auxin-induced callus and rooting responses were strongly genotype-dependent. To investigate the molecular mechanisms involved in these differential responses, we performed a time-series study of AR formation in two rootstocks with contrasting rooting performance, Garnem and GF 677, by culturing in vitro microcuttings with and without auxin treatment (0.9 mg/L of indole-3-butyric acid [IBA]). Despite showing a similar histological structure, Garnem and GF677 rootstocks displayed dynamic changes in endogenous hormone homeostasis involving metabolites such as indole-3-acetic acid (IAA) conjugated to aspartic acid (IAA-Asp), and these changes could explain the differences observed during rooting.

14.
J Exp Bot ; 73(14): 4683-4695, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35312781

ABSTRACT

Root system architecture ultimately depends on precise signaling between different cells and tissues in the root apical meristem (RAM) and integration with environmental cues. This study describes a simple pipeline to simultaneously determine cellular parameters, nucleus geometry, and cell cycle kinetics in the RAM. The method uses marker-free techniques for nucleus and cell boundary detection, and 5-ethynyl-2'-deoxyuridine (EdU) staining for DNA replication quantification. Based on this approach, we characterized differences in cell volume, nucleus volume, and nucleus shape across different domains of the Arabidopsis RAM. We found that DNA replication patterns were cell layer and region dependent. G2 phase duration, which varied from 3.5 h in the pericycle to more than 4.5 h in the epidermis, was found to be associated with some features of nucleus geometry. Endocycle duration was determined as the time required to achieve 100% EdU-positive cells in the elongation zone and, as such, it was estimated to be in the region of 5 h for the epidermis and cortex. This experimental pipeline could be used to precisely map cell cycle duration in the RAM of mutants and in response to environmental stress in several plant species without the need for introgressing molecular cell cycle markers.


Subject(s)
Arabidopsis , Meristem , Arabidopsis/physiology , Cell Cycle , Kinetics , Meristem/metabolism , Plant Roots/genetics
15.
Int J Mol Sci ; 22(21)2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34769274

ABSTRACT

Plants have a remarkable regenerative capacity, which allows them to survive tissue damage after biotic and abiotic stresses. In this study, we use Solanum lycopersicum 'Micro-Tom' explants as a model to investigate wound-induced de novo organ formation, as these explants can regenerate the missing structures without the exogenous application of plant hormones. Here, we performed simultaneous targeted profiling of 22 phytohormone-related metabolites during de novo organ formation and found that endogenous hormone levels dynamically changed after root and shoot excision, according to region-specific patterns. Our results indicate that a defined temporal window of high auxin-to-cytokinin accumulation in the basal region of the explants was required for adventitious root formation and that was dependent on a concerted regulation of polar auxin transport through the hypocotyl, of local induction of auxin biosynthesis, and of local inhibition of auxin degradation. In the apical region, though, a minimum of auxin-to-cytokinin ratio is established shortly after wounding both by decreasing active auxin levels and by draining auxin via its basipetal transport and internalization. Cross-validation with transcriptomic data highlighted the main hormonal gradients involved in wound-induced de novo organ formation in tomato hypocotyl explants.


Subject(s)
Cytokinins/metabolism , Hypocotyl/metabolism , Indoleacetic Acids/metabolism , Solanum lycopersicum/metabolism
16.
Plants (Basel) ; 10(11)2021 Nov 06.
Article in English | MEDLINE | ID: mdl-34834762

ABSTRACT

When dealing with plant roots, a multiscale description of the functional root structure is needed. Since the beginning of 21st century, new devices such as laser confocal microscopes have been accessible for coarse root structure measurements, including three-dimensional (3D) reconstruction. Most researchers are familiar with using simple 2D geometry visualization that does not allow quantitative determination of key morphological features from an organ-like perspective. We provide here a detailed description of the quantitative methods available for 3D analysis of root features at single-cell resolution, including root asymmetry, lateral root analysis, cell size and nuclear organization, cell-cycle kinetics, and chromatin structure analysis. Quantitative maps of the root apical meristem (RAM) are shown for different species, including Arabidopsis thaliana (L.), Heynh, Nicotiana tabacum L., Medicago sativa L., and Setaria italica (L.) P. Beauv. The 3D analysis of the RAM in these species showed divergence in chromatin organization and cell volume distribution that might be used to study root zonation for each root tissue. Detailed protocols and possible pitfalls in the usage of the marker lines are discussed. Therefore, researchers who need to improve their quantitative root biology portfolio can use them as a reference.

17.
Int J Mol Sci ; 22(18)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34576275

ABSTRACT

Plants have remarkable regenerative capacity, which allows them to survive tissue damage after exposure to biotic and abiotic stresses. Some of the key transcription factors and hormone crosstalk mechanisms involved in wound-induced organ regeneration have been extensively studied in the model plant Arabidopsis thaliana. However, little is known about the role of metabolism in wound-induced organ formation. Here, we performed detailed transcriptome analysis and used a targeted metabolomics approach to study de novo organ formation in tomato hypocotyl explants and found tissue-specific metabolic differences and divergent developmental pathways. Our results indicate that successful regeneration in the apical region of the hypocotyl depends on a specific metabolic switch involving the upregulation of photorespiratory pathway components and the differential regulation of photosynthesis-related gene expression and gluconeogenesis pathway activation. These findings provide a useful resource for further investigation of the molecular mechanisms involved in wound-induced organ formation in crop species such as tomato.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Hypocotyl/metabolism , Metabolomics , Solanum lycopersicum/genetics , Gene Expression Profiling , Gluconeogenesis , Glycolysis , High-Throughput Nucleotide Sequencing , Photosynthesis , Plant Roots/metabolism , Plant Shoots/metabolism , Plants, Genetically Modified/metabolism , RNA-Seq , Transcription Factors/metabolism , Wound Healing
18.
Plant Cell Rep ; 40(12): 2435-2447, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34524479

ABSTRACT

KEY MESSAGE: We detected the genome-wide pattern of DNA methylation and its association with gene expression in sexual and asexual progenies of mature Robinia pseudoacacia trees. DNA methylation plays an important role in plant reproduction and development. Although some studies on sexual reproduction have been carried out in model plants, little is known about the dynamic changes in DNA methylation and their effect on gene expression in sexual and asexual progeny of woody plants. Here, through whole-genome bisulfite sequencing, we revealed DNA methylation patterns in the sexual and asexual progenies of mature Robinia pseudoacacia to understand the regulation of gene expression by DNA methylation in juvenile seedlings. An average of 53% CG, 34% CHG and 5% CHH contexts was methylated in the leaves of mature and juvenile individuals. The CHH methylation level of asexually propagated seedlings was significantly lower than that of seed-derived seedlings and mature trees. The intergenic regions had the highest methylation level. Analysis of differentially methylated regions (DMRs) showed that most of them were hypermethylated and located in the gene upstream and introns. A total of 24, 108 and 162 differentially expressed genes containing DMRs were identified in root sprouts (RSs), root cuttings (RCs) and seed-derived seedlings (SSs), respectively, and a large proportion of them showed hypermethylation. In addition, DMRs were enriched within GO subcategories including catalytic activity, metabolic process and cellular process. The results reveal widespread DNA methylation changes between mature plants and their progenies through sexual/asexual reproduction, which provides novel insights into DNA methylation reprogramming and the regulation of gene expression in woody plants.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Robinia/physiology , Gene Expression Regulation, Plant , Genome, Plant , Genome-Wide Association Study , Germination , Plant Proteins/genetics , Reproduction, Asexual , Robinia/genetics , Seedlings/genetics
19.
Plant Cell Environ ; 44(9): 2966-2986, 2021 09.
Article in English | MEDLINE | ID: mdl-34053093

ABSTRACT

To determine whether root-supplied ABA alleviates saline stress, tomato (Solanum lycopersicum L. cv. Sugar Drop) was grafted onto two independent lines (NCED OE) overexpressing the SlNCED1 gene (9-cis-epoxycarotenoid dioxygenase) and wild type rootstocks. After 200 days of saline irrigation (EC = 3.5 dS m-1 ), plants with NCED OE rootstocks had 30% higher fruit yield, but decreased root biomass and lateral root development. Although NCED OE rootstocks upregulated ABA-signalling (AREB, ATHB12), ethylene-related (ACCs, ERFs), aquaporin (PIPs) and stress-related (TAS14, KIN, LEA) genes, downregulation of PYL ABA receptors and signalling components (WRKYs), ethylene synthesis (ACOs) and auxin-responsive factors occurred. Elevated SlNCED1 expression enhanced ABA levels in reproductive tissue while ABA catabolites accumulated in leaf and xylem sap suggesting homeostatic mechanisms. NCED OE also reduced xylem cytokinin transport to the shoot and stimulated foliar 2-isopentenyl adenine (iP) accumulation and phloem transport. Moreover, increased xylem GA3 levels in growing fruit trusses were associated with enhanced reproductive growth. Improved photosynthesis without changes in stomatal conductance was consistent with reduced stress sensitivity and hormone-mediated alteration of leaf growth and mesophyll structure. Combined with increases in leaf nutrients and flavonoids, systemic changes in hormone balance could explain enhanced vigour, reproductive growth and yield under saline stress.


Subject(s)
Abscisic Acid/metabolism , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Solanum lycopersicum/metabolism , Solanum lycopersicum/physiology , Microscopy, Electron, Scanning , Oligonucleotide Array Sequence Analysis , Plant Growth Regulators/physiology , Plant Leaves/ultrastructure , Plant Roots/physiology , Plant Shoots/physiology , Real-Time Polymerase Chain Reaction , Salt Stress , Xylem/metabolism
20.
Plant Cell Environ ; 44(5): 1642-1662, 2021 05.
Article in English | MEDLINE | ID: mdl-33464573

ABSTRACT

Adventitious roots (ARs) are produced from non-root tissues in response to different environmental signals, such as abiotic stresses, or after wounding, in a complex developmental process that requires hormonal crosstalk. Here, we characterized AR formation in young seedlings of Solanum lycopersicum cv. 'Micro-Tom' after whole root excision by means of physiological, genetic and molecular approaches. We found that a regulated basipetal auxin transport from the shoot and local auxin biosynthesis triggered by wounding are both required for the re-establishment of internal auxin gradients within the vasculature. This promotes cell proliferation at the distal cambium near the wound in well-defined positions of the basal hypocotyl and during a narrow developmental window. In addition, a pre-established pattern of differential auxin responses along the apical-basal axis of the hypocotyl and an as of yet unknown cell-autonomous inhibitory pathway contribute to the temporal and spatial patterning of the newly formed ARs on isolated hypocotyl explants. Our work provides an experimental outline for the dissection of wound-induced AR formation in tomato, a species that is suitable for molecular identification of gene regulatory networks via forward and reverse genetics approaches.


Subject(s)
Indoleacetic Acids/metabolism , Plant Roots/physiology , Plant Shoots/physiology , Solanum lycopersicum/physiology , Biological Transport , Environment , Gravitropism/physiology , Hypocotyl/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...