Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35884503

ABSTRACT

Breast cancer is one the main death causes for women worldwide, as 16% of the diagnosed malignant lesions worldwide are its consequence. In this sense, it is of paramount importance to diagnose these lesions in the earliest stage possible, in order to have the highest chances of survival. While there are several works that present selected topics in this area, none of them present a complete panorama, that is, from the image generation to its interpretation. This work presents a comprehensive state-of-the-art review of the image generation and processing techniques to detect Breast Cancer, where potential candidates for the image generation and processing are presented and discussed. Novel methodologies should consider the adroit integration of artificial intelligence-concepts and the categorical data to generate modern alternatives that can have the accuracy, precision and reliability expected to mitigate the misclassifications.

2.
Sensors (Basel) ; 21(9)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062944

ABSTRACT

The economic and personal consequences that a car accident generates for society have been increasing in recent years. One of the causes that can generate a car accident is the stress level the driver has; consequently, the detection of stress events is a highly desirable task. In this article, the efficacy that statistical time features (STFs), such as root mean square, mean, variance, and standard deviation, among others, can reach in detecting stress events using electromyographical signals in drivers is investigated, since they can measure subtle changes that a signal can have. The obtained results show that the variance and standard deviation coupled with a support vector machine classifier with a cubic kernel are effective for detecting stress events where an AUC of 0.97 is reached. In this sense, since SVM has different kernels that can be trained, they are used to find out which one has the best efficacy using the STFs as feature inputs and a training strategy; thus, information about model explain ability can be determined. The explainability of the machine learning algorithm allows generating a deeper comprehension about the model efficacy and what model should be selected depending on the features used to its development.


Subject(s)
Automobiles , Support Vector Machine , Algorithms , Electromyography , Machine Learning
3.
Sensors (Basel) ; 20(1)2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31861320

ABSTRACT

Heart diseases are among the most common death causes in the population. Particularly, sudden cardiac death (SCD) is the cause of 10% of the deaths around the world. For this reason, it is necessary to develop new methodologies that can predict this event in the earliest possible stage. This work presents a novel methodology to predict when a person can develop an SCD episode before it occurs. It is based on the adroit combination of the empirical mode decomposition, nonlinear measurements, such as the Higuchi fractal and permutation entropy, and a neural network. The obtained results show that the proposed methodology is capable of detecting an SCD episode 25 min before it appears with a 94% accuracy. The main benefits of the proposal are: (1) an improved detection time of 25% compared with previously published works, (2) moderate computational complexity since only two features are used, and (3) it uses the raw ECG without any preprocessing stage, unlike recent previous works.


Subject(s)
Death, Sudden, Cardiac/pathology , Electrocardiography/methods , Adolescent , Adult , Aged , Aged, 80 and over , Analysis of Variance , Entropy , Female , Humans , Male , Middle Aged , Neural Networks, Computer , Young Adult
4.
J Med Syst ; 42(10): 176, 2018 Aug 16.
Article in English | MEDLINE | ID: mdl-30117048

ABSTRACT

Sudden cardiac death (SCD) is one of the main causes of death among people. A new methodology is presented for predicting the SCD based on ECG signals employing the wavelet packet transform (WPT), a signal processing technique, homogeneity index (HI), a nonlinear measurement for time series signals, and the Enhanced Probabilistic Neural Network classification algorithm. The effectiveness and usefulness of the proposed method is evaluated using a database of measured ECG data acquired from 20 SCD and 18 normal patients. The proposed methodology presents the following significant advantages: (1) compared with previous works, the proposed methodology achieves a higher accuracy using a single nonlinear feature, HI, thus requiring low computational resource for predicting an SCD onset in real-time, unlike other methodologies proposed in the literature where a large number of nonlinear features are used to predict an SCD event; (2) it is capable of predicting the risk of developing an SCD event up to 20 min prior to the onset with a high accuracy of 95.8%, superseding the prior 12 min prediction time reported recently, and (3) it uses the ECG signal directly without the need for transforming the signal to a heart rate variability signal, thus saving time in the processing.


Subject(s)
Death, Sudden, Cardiac , Electrocardiography , Signal Processing, Computer-Assisted , Wavelet Analysis , Adolescent , Adult , Aged , Aged, 80 and over , Arrhythmias, Cardiac , Humans , Israel , Middle Aged , Young Adult
5.
Sensors (Basel) ; 14(12): 24483-501, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25536002

ABSTRACT

The implementation of signal filters in a real-time form requires a tradeoff between computation resources and the system performance. Therefore, taking advantage of low lag response and the reduced consumption of resources, in this article, the Recursive Least Square (RLS) algorithm is used to filter a signal acquired from a fiber-optics-based sensor. In particular, a Long-Period Fiber Grating (LPFG) sensor is used to measure the bending movement of a finger. After that, the Gaussian Mixture Model (GMM) technique allows us to classify the corresponding finger position along the motion range. For these measures to help in the development of an autonomous robotic hand, the proposed technique can be straightforwardly implemented on real time platforms such as Field Programmable Gate Array (FPGA) or Digital Signal Processors (DSP). Different angle measurements of the finger's motion are carried out by the prototype and a detailed analysis of the system performance is presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...