Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Physiol (Oxf) ; 216(1): 15-41, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26010896

ABSTRACT

Skeletal muscles comprise a substantial portion of whole body mass and are integral for locomotion and metabolic health. Increasing age is associated with declines in both muscle mass and function (e.g. strength-related performance, power) with declines in muscle function quantitatively outweighing those in muscle volume. The mechanisms behind these declines are multi-faceted involving both intrinsic age-related metabolic dysregulation and environmental influences such as nutritional and physical activity. Ageing is associated with a degree of 'anabolic resistance' to these key environmental inputs, which likely accelerates the intrinsic processes driving ageing. On this basis, strategies to sensitize and/or promote anabolic responses to nutrition and physical activity are likely to be imperative in alleviating the progression and trajectory of sarcopenia. Both resistance- and aerobic-type exercises are likely to confer functional and health benefits in older age, and a clutch of research suggests that enhancement of anabolic responsiveness to exercise and/or nutrition may be achieved by optimizing modifications of muscle-loading paradigms (workload, volume, blood flow restriction) or nutritional support (e.g. essential amino acid/leucine) patterns. Nonetheless, more work is needed in which a more holistic view in ageing studies is taken into account. This should include improved characterization of older study recruits, that is physical activity/nutritional behaviours, to limit confounding variables influencing whether findings are attributable to age, or other environmental influences. Nonetheless, on balance, ageing is associated with declines in muscle mass and function and a partially related decline in aerobic capacity. There is also good evidence that metabolic flexibility is impaired in older age.


Subject(s)
Aging/physiology , Exercise/physiology , Homeostasis/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Animals , Humans , Nutritional Status/physiology
2.
Exp Physiol ; 96(7): 699-707, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21571817

ABSTRACT

Skeletal muscles improve their oxidative fatty acid and glucose metabolism following endurance training, but the magnitude of response varies considerably from person to person. In 20 untrained young women we examined interindividual variability in training responses of metabolic enzymes following 6 weeks of endurance training, sufficient to increase maximal oxygen uptake by 10 ± 8% (mean ± SD). Training led to increases in mitochondrial enzymes [succinate dehydrogenase (SDH; 47 ± 78%), cytochrome c oxidase (52 ± 70%) and ATP synthase (63 ± 69%)] and proteins involved in fatty acid metabolism [3-hydroxyacyl CoA dehydrogenase (69 ± 92%) and fatty acid transporter CD36 (86 ± 31%)]. Increases in enzymes of glucose metabolism [phosphofructokinase (29 ± 94%) and glucose transporter 4 (18 ± 65%)] were not significant. There was no relationship between changes in maximal oxygen uptake and the changes in the metabolic proteins. Considerable interindividual variability was seen in the magnitude of responses. The response of each enzyme was proportional to the change in SDH; individuals with a large increase in SDH also showed high gains in all other enzymes, and vice versa. Peroxisome proliferator-activated receptor γ coactivator 1α protein content increased after training, but was not correlated with changes in the metabolic proteins. In conclusion, the results revealed co-ordinated adaptation of several metabolic enzymes following endurance training, despite differences between people in the magnitude of response. Differences between individuals in the magnitude of response might reflect the influence of environmental and genetic factors that govern training adaptations.


Subject(s)
Muscle, Skeletal/enzymology , Physical Endurance/physiology , Adult , Carbohydrate Metabolism/physiology , Electron Transport Complex IV/metabolism , Female , Humans , Lipid Metabolism/physiology , PPAR gamma/metabolism , Physical Exertion , Succinate Dehydrogenase/metabolism
3.
Eur J Appl Physiol ; 111(9): 2339-47, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21344271

ABSTRACT

Sequence variations in the gene encoding the hypoxia-inducible factor-1alpha, HIF1A, have been associated with physiologic function and could be associated with exercise responses. In the HIF1A P582S gene polymorphism (C1772T; rs 11549465 C/T), a single nucleotide transition from C → T alters the codon sequence from the usual amino acid; proline (C-allele), to serine (T-allele). This polymorphism was examined for association with endurance training responses in 58 untrained young women who completed a 6-week laboratory-based endurance training programme. Participant groups were defined as CC homozygotes versus carriers of a T-allele (CC vs. CT genotypes). Adaptations were examined at the systemic-level, by measuring [Formula: see text] and the molecular-level by measuring enzymes determined from vastus lateralis (n = 20): 3-hydroacyl-CoA-dehydrogenase (HAD), which regulates mitochondrial fatty acid oxidation; cytochrome C oxidase (COX-1), a marker of mitochondrial density; and phosphofructokinase (PFK), a marker of glycolytic capacity. CT genotypes showed 45% higher training-induced gains in [Formula: see text] compared with CC genotypes (P < 0.05). At the molecular level, CT increased the ratios PFK/HAD and PFK/COX-1 (47 and 3%, respectively), while in the CC genotypes these ratios were decreased (-26 and -54%, respectively). In conclusion, the T-allele of HIF1A P582S was associated with greater gains in [Formula: see text] following endurance training in young women. In a sub-group we also provide preliminary evidence of differential muscle metabolic adaptations between genotypes.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Physical Education and Training , Physical Endurance/genetics , Polymorphism, Single Nucleotide , Age Factors , Amino Acid Substitution , Exercise Test , Female , Genetic Association Studies , Humans , Physical Endurance/physiology , Proline/genetics , Serine/genetics , Sex Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...