Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
mBio ; : e0112824, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904384

ABSTRACT

The injectisome encoded by Salmonella pathogenicity island 2 (SPI-2) had been thought to translocate 28 effectors. Here, we used a proteomic approach to characterize the secretome of a clinical strain of invasive non-typhoidal Salmonella enterica serovar Enteritidis that had been mutated to cause hyper-secretion of the SPI-2 injectisome effectors. Along with many known effectors, we discovered the novel SseM protein. sseM is widely distributed among the five subspecies of Salmonella enterica, is found in many clinically relevant serovars, and is co-transcribed with pipB2, a SPI-2 effector gene. The translocation of SseM required a functional SPI-2 injectisome. Following expression in human cells, SseM interacted with five components of the dystrophin-associated protein complex (DAPC), namely, ß-2-syntrophin, utrophin/dystrophin, α-catulin, α-dystrobrevin, and ß-dystrobrevin. The interaction between SseM and ß-2-syntrophin and α-dystrobrevin was verified in Salmonella Typhimurium-infected cells and relied on the postsynaptic density-95/discs large/zonula occludens-1 (PDZ) domain of ß-2-syntrophin and a sequence corresponding to a PDZ-binding motif (PBM) in SseM. A ΔsseM mutant strain had a small competitive advantage over the wild-type strain in the S. Typhimurium/mouse model of systemic disease. This phenotype was complemented by a plasmid expressing wild-type SseM from S. Typhimurium or S. Enteritidis and was dependent on the PBM of SseM. Therefore, a PBM within a Salmonella effector mediates interactions with the DAPC and modulates the systemic growth of bacteria in mice. Furthermore, the ΔsseM mutant strain displayed enhanced replication in bone marrow-derived macrophages, demonstrating that SseM restrains intracellular bacterial growth to modulate Salmonella virulence. IMPORTANCE: In Salmonella enterica, the injectisome machinery encoded by Salmonella pathogenicity island 2 (SPI-2) is conserved among the five subspecies and delivers proteins (effectors) into host cells, which are required for Salmonella virulence. The identification and functional characterization of SPI-2 injectisome effectors advance our understanding of the interplay between Salmonella and its host(s). Using an optimized method for preparing secreted proteins and a clinical isolate of the invasive non-typhoidal Salmonella enterica serovar Enteritidis strain D24359, we identified 22 known SPI-2 injectisome effectors and one new effector-SseM. SseM modulates bacterial growth during murine infection and has a sequence corresponding to a postsynaptic density-95/discs large/zonula occludens-1 (PDZ)-binding motif that is essential for interaction with the PDZ-containing host protein ß-2-syntrophin and other components of the dystrophin-associated protein complex (DAPC). To our knowledge, SseM is unique among Salmonella effectors in containing a functional PDZ-binding motif and is the first bacterial protein to target the DAPC.

2.
IJID Reg ; 9: 80-87, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38020187

ABSTRACT

Objectives: This study aimed to provide evidence of the domestic benefits of introducing an integrative genomic analysis from the One Health approach in the national surveillance of Salmonella enterica between 1997-2017 in Colombia. Methods: Data on Salmonella from clinical laboratory-based surveillance between 1997-2017 and from a national cross-sectional study at chicken retail stores in Colombia were compared using a phenotypic, molecular, and genomic approaches. Additional analysis by serovar using single nucleotide polymorphism was developed to increase the resolution of the relatedness between the interfaces. Results: Locally, the diversity and pathogenic factors of the prevalent S. enterica serovars associated with foodborne disease in Colombia were described using laboratory, pulse field gel electrophoresis, and whole genome sequencing data. For example, the resolution of pulse field gel electrophoresis allowed the description of two main foodborne clusters of Salmonella Enteritidis isolates, which were expanded to eight foodborne clades using whole genome sequencing. Likewise, virulence factors and antimicrobial resistance determinants, and mobile genetic elements that converged in the foodborne clades should be considered a public health concern in Colombia. All results by serovar were compiled in an interactive easy to share report. Conclusion: Whole genome sequencing is a technology that provides a precise assessment of emerging foodborne risks such as the Salmonella foodborne clades, but it requires an integrative and continued collaboration between the stakeholders across the One Health sectors to promote appropriated actions and policies in public health.

3.
Wellcome Open Res ; 8: 111, 2023.
Article in English | MEDLINE | ID: mdl-37808389

ABSTRACT

Invasive non-typhoidal Salmonella disease (iNTS) is a major cause of morbidity and mortality globally, particularly as a cause of bloodstream infection in children and immunocompromised adults in sub-Saharan Africa. Vaccines to prevent non-typhoidal Salmonella (NTS) would represent a valuable public health tool in this setting to avert cases and prevent expansion of antimicrobial resistance. Several NTS and combination typhoidal-NTS vaccine candidates are in early-stage development, although the pathway to licensure is unclear due to challenges in conducting large phase III field trials. Controlled human infection models (CHIM) present an opportunity to accelerate vaccine development for a range of enteric pathogens. Several recent typhoidal Salmonella CHIMs have been conducted safely and have played pivotal roles in progressing vaccine candidates to pre-qualification and licensure. The Challenge Non-Typhoidal Salmonella (CHANTS) consortium has been formed with funding from the Wellcome Trust, to deliver the first NTS CHIM, which can act as a platform for future vaccine evaluation. This paper reports the conclusions of a consultation group workshop convened with key stakeholders. The aims of this meeting were to: (1) define the rationale for an NTS CHIM (2) map the NTS vaccine pipeline (3) refine study design and (4) establish potential future use cases.

4.
Nat Commun ; 14(1): 3517, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37316492

ABSTRACT

Antimicrobial resistant Salmonella enterica serovar Concord (S. Concord) is known to cause severe gastrointestinal and bloodstream infections in patients from Ethiopia and Ethiopian adoptees, and occasional records exist of S. Concord linked to other countries. The evolution and geographical distribution of S. Concord remained unclear. Here, we provide a genomic overview of the population structure and antimicrobial resistance (AMR) of S. Concord by analysing genomes from 284 historical and contemporary isolates obtained between 1944 and 2022 across the globe. We demonstrate that S. Concord is a polyphyletic serovar distributed among three Salmonella super-lineages. Super-lineage A is composed of eight S. Concord lineages, of which four are associated with multiple countries and low levels of AMR. Other lineages are restricted to Ethiopia and horizontally acquired resistance to most antimicrobials used for treating invasive Salmonella infections in low- and middle-income countries. By reconstructing complete genomes for 10 representative strains, we demonstrate the presence of AMR markers integrated in structurally diverse IncHI2 and IncA/C2 plasmids, and/or the chromosome. Molecular surveillance of pathogens such as S. Concord supports the understanding of AMR and the multi-sector response to the global AMR threat. This study provides a comprehensive baseline data set essential for future molecular surveillance.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Humans , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Ethiopia/epidemiology , Genomics , Salmonella/genetics
5.
J Med Microbiol ; 72(6)2023 Jun.
Article in English | MEDLINE | ID: mdl-37294286

ABSTRACT

Background. Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) has been linked to outbreaks of foodborne gastroenteritis disease, and the emergence of antimicrobial-resistant clones. In Colombia, laboratory surveillance of Salmonella spp. between 1997-2018 revealed that S. Typhimurium was the most ubiquitous serovar (27.6 % of all Salmonella isolates), with increasing levels of resistance to several families of antibiotics.Hypothesis. Resistant isolates of S. Typhimurium recovered from human clinical, food and swine samples carry class 1 integrons that are linked to antimicrobial resistance genes.Aim. Identify class 1 integrons, and investigate their association with other mobile genetic elements, and their relationship to the antimicrobial resistance of Colombian S. Typhimurium isolates.Methods. In this study, 442 isolates of S. Typhimurium were analysed, of which 237 were obtained from blood culture, 151 from other clinical sources, 4 from non-clinical sources and 50 from swine samples. Class 1 integrons and plasmid incompatibility groups were analysed by PCR and whole-genome sequencing (WGS), and regions flanking integrons were identified by WGS. The phylogenetic relationship was established by multilocus sequence typing (MLST) and single-nucleotide polymorphism (SNP) distances for 30 clinical isolates.Results . Overall, 39 % (153/392) of the human clinical isolates and 22 % (11/50) of the swine S. Typhimurium isolates carried complete class 1 integrons. Twelve types of gene cassette arrays were identified, including dfr7-aac-bla OXA-2 (Int1-Col1), which was the most common one in human clinical isolates (75.2 %, 115/153). Human clinical and swine isolates that carried class 1 integrons were resistant to up to five and up to three antimicrobial families, respectively. The Int1-Col1 integron was most prevalent in stool isolates and was associated with Tn21. The most common plasmid incompatibility group was IncA/C.Conclusions. The widespread presence of the IntI1-Col1 integron in Colombia since 1997 was striking. A possible relationship between integrons, source and mobile elements that favour the spread of antimicrobial resistance determinants in Colombian S. Typhimurium was identified.


Subject(s)
Salmonella Infections, Animal , Salmonella enterica , Swine , Animals , Humans , Salmonella typhimurium/genetics , Integrons/genetics , Colombia/epidemiology , Multilocus Sequence Typing , Phylogeny , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Salmonella enterica/genetics
7.
PLoS Negl Trop Dis ; 16(12): e0010982, 2022 12.
Article in English | MEDLINE | ID: mdl-36508466

ABSTRACT

BACKGROUND: Invasive Salmonella infections cause significant morbidity and mortality in Sub-Saharan Africa. However, the routes of transmission are uncertain. We conducted a case-control study of index-case and geographically-matched control households in Blantyre, Malawi, sampling Salmonella isolates from index cases, healthy people, animals, and the household environment. METHODOLOGY: Sixty index cases of human invasive Salmonella infection were recruited (March 2015-Oct 2016). Twenty-eight invasive Non-Typhoidal Salmonella (iNTS) disease and 32 typhoid patients consented to household sampling. Each index-case household was geographically matched to a control household. Extensive microbiological sampling included stool sampling from healthy household members, stool or rectal swabs from household-associated animals and boot-sock sampling of the household environment. FINDINGS: 1203 samples from 120 households, yielded 43 non-Typhoidal Salmonella (NTS) isolates from 25 households (overall sample positivity 3.6%). In the 28 iNTS patients, disease was caused by 3 STs of Salmonella Typhimurium, mainly ST313. In contrast, the isolates from households spanned 15 sequence types (STs). Two S. Typhimurium isolates from index cases closely matched isolates from their respective asymptomatic household members (2 and 3 SNP differences respectively). Despite the recovery of a diverse range of NTS, there was no overlap between the STs causing iNTS disease with any environmental or animal isolates. CONCLUSIONS: The finding of NTS strains from index cases that matched household members, coupled with lack of related animal or environmental isolates, supports a hypothesis of human to human transmission of iNTS infections in the household. The breadth of NTS strains found in animals and the household environment demonstrated the robustness of NTS sampling and culture methodology, and suggests a diverse ecology of Salmonella in this setting. Healthy typhoid (S. Typhi) carrier state was not detected. The lack of S. Typhi isolates from the household environment suggests that further methodological development is needed to culture S. Typhi from the environment.


Subject(s)
Salmonella Infections , Typhoid Fever , Animals , Humans , Malawi/epidemiology , Case-Control Studies , Salmonella Infections/epidemiology , Salmonella Infections/microbiology , Salmonella typhimurium/genetics , Typhoid Fever/epidemiology , Salmonella typhi
8.
Microbiol Spectr ; 10(6): e0318222, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36409092

ABSTRACT

Salmonella enterica serovar Enteritidis is one of the most commonly reported serovars of nontyphoidal Salmonella causing human disease and is responsible for both gastroenteritis and invasive nontyphoidal Salmonella (iNTS) disease worldwide. Whole-genome sequence (WGS) comparison of Salmonella Enteritidis isolates from across the world has identified three distinct clades, global epidemic, Central/East African, and West African, all of which have been implicated in epidemics: the global epidemic clade was linked to poultry-associated gastroenteritis, while the two African clades were related to iNTS disease. However, the distribution and epidemiology of these clades across Africa are poorly understood because identification of these clades currently requires whole-genome sequencing capacity. Here, we report a sensitive, time- and cost-effective real-time PCR assay capable of differentiating between the Salmonella Enteritidis clades to facilitate surveillance and to inform public health responses. The assay described here is limited to previously confirmed S. Enteritidis isolates. IMPORTANCE Challenges in the diagnosis and treatment of invasive Salmonella Enteritidis bloodstream infections in sub-Saharan Africa are responsible for a case fatality rate of approximately 15%. It is important to identify distinct clades of S. Enteritidis in diagnostic laboratories in the African setting to determine the different health outcomes associated with particular outbreaks. Here, we describe the development of a high-quality molecular classification assay for clade typing of S. Enteritidis that is ideal for use in public health laboratories in resource-limited settings.


Subject(s)
Gastroenteritis , Salmonella Infections , Salmonella enterica , Animals , Humans , Salmonella enteritidis/genetics , Multiplex Polymerase Chain Reaction , Salmonella Infections/diagnosis , Salmonella Infections/epidemiology , Poultry , Salmonella enterica/genetics
9.
Microb Genom ; 8(3)2022 03.
Article in English | MEDLINE | ID: mdl-35302932

ABSTRACT

Non-typhoidal Salmonella associated with multidrug resistance cause invasive disease in sub-Saharan Africa. Specific lineages of serovars Typhimurium and Enteritidis have been implicated. Here we characterized the genomic diversity of 100 clinical non-typhoidal Salmonella collected from 93 patients in 2001 from the eastern, and in 2006-2018 from the western regions of The Gambia respectively. A total of 93 isolates (64 invasive, 23 gastroenteritis and six other sites) representing a single infection episode were phenotypically tested for antimicrobial susceptibility using the Kirby-Bauer disc diffusion technique. Whole genome sequencing of 100 isolates was performed using Illumina, and the reads were assembled and analysed using SPAdes. The Salmonella in Silico Typing Resource (SISTR) was used for serotyping. SNP differences among the 93 isolates were determined using Roary, and phylogenetic analysis was performed in the context of 495 African strains from the European Nucleotide Archive. Salmonella serovars Typhimurium (26/64; 30.6 %) and Enteritidis (13/64; 20.3 %) were associated with invasive disease, whilst other serovars were mainly responsible for gastroenteritis (17/23; 73.9 %). The presence of three major serovar Enteritidis clades was confirmed, including the invasive West African clade, which made up more than half (11/16; 68.8 %) of the genomes. Multidrug resistance was confined among the serovar Enteritidis West African clade. The presence of this epidemic virulent clade has potential for spread of resistance and thus important implications for systematic patient management. Surveillance and epidemiological investigations to inform control are warranted.


Subject(s)
Gastroenteritis , Salmonella Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial/genetics , Gambia/epidemiology , Gastroenteritis/epidemiology , Genomics , Humans , Phylogeny , Salmonella Infections/drug therapy , Salmonella Infections/epidemiology , Salmonella typhimurium/genetics
10.
Genome Biol ; 22(1): 349, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34930397

ABSTRACT

We have developed an efficient and inexpensive pipeline for streamlining large-scale collection and genome sequencing of bacterial isolates. Evaluation of this method involved a worldwide research collaboration focused on the model organism Salmonella enterica, the 10KSG consortium. Following the optimization of a logistics pipeline that involved shipping isolates as thermolysates in ambient conditions, the project assembled a diverse collection of 10,419 isolates from low- and middle-income countries. The genomes were sequenced using the LITE pipeline for library construction, with a total reagent cost of less than USD$10 per genome. Our method can be applied to other large bacterial collections to underpin global collaborations.


Subject(s)
Genome, Bacterial , Whole Genome Sequencing/methods , DNA, Bacterial/isolation & purification , Genome , Humans , Salmonella enterica/genetics , Whole Genome Sequencing/economics
11.
Viruses ; 13(3)2021 03 15.
Article in English | MEDLINE | ID: mdl-33804216

ABSTRACT

In recent years, novel lineages of invasive non-typhoidal Salmonella (iNTS) serovars Typhimurium and Enteritidis have been identified in patients with bloodstream infection in Sub-Saharan Africa. Here, we isolated and characterised 32 phages capable of infecting S. Typhimurium and S. Enteritidis, from water sources in Malawi and the UK. The phages were classified in three major phylogenetic clusters that were geographically distributed. In terms of host range, Cluster 1 phages were able to infect all bacterial hosts tested, whereas Clusters 2 and 3 had a more restricted profile. Cluster 3 contained two sub-clusters, and 3.b contained the most novel isolates. This study represents the first exploration of the potential for phages to target the lineages of Salmonella that are responsible for bloodstream infections in Sub-Saharan Africa.


Subject(s)
Bacteriophages , Salmonella Infections/therapy , Salmonella enteritidis/virology , Salmonella typhimurium/virology , Sepsis/microbiology , Humans , Malawi/epidemiology , Salmonella Infections/virology , Salmonella enteritidis/isolation & purification , Salmonella typhimurium/isolation & purification , United Kingdom/epidemiology , Water Microbiology
12.
Microbiol Resour Announc ; 10(12)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33766909

ABSTRACT

We report the complete genome sequencing and annotation of four Salmonella enterica serovar Enteritidis isolates, two that are representative of the Central/Eastern African clade (CP255 and D7795) and two of the Global Epidemic clade (A1636 and P125109).

13.
Clin Infect Dis ; 73(4): 631-641, 2021 08 16.
Article in English | MEDLINE | ID: mdl-33493332

ABSTRACT

BACKGROUND: The Global Enteric Multicenter Study (GEMS) determined the etiologic agents of moderate-to-severe diarrhea (MSD) in children under 5 years old in Africa and Asia. Here, we describe the prevalence and antimicrobial susceptibility of nontyphoidal Salmonella (NTS) serovars in GEMS and examine the phylogenetics of Salmonella Typhimurium ST313 isolates. METHODS: Salmonella isolated from children with MSD or diarrhea-free controls were identified by classical clinical microbiology and serotyped using antisera and/or whole-genome sequence data. We evaluated antimicrobial susceptibility using the Kirby-Bauer disk-diffusion method. Salmonella Typhimurium sequence types were determined using multi-locus sequence typing, and whole-genome sequencing was performed to assess the phylogeny of ST313. RESULTS: Of 370 Salmonella-positive individuals, 190 (51.4%) were MSD cases and 180 (48.6%) were diarrhea-free controls. The most frequent Salmonella serovars identified were Salmonella Typhimurium, serogroup O:8 (C2-C3), serogroup O:6,7 (C1), Salmonella Paratyphi B Java, and serogroup O:4 (B). The prevalence of NTS was low but similar across sites, regardless of age, and was similar among both cases and controls except in Kenya, where Salmonella Typhimurium was more commonly associated with cases than controls. Phylogenetic analysis showed that these Salmonella Typhimurium isolates, all ST313, were highly genetically related to isolates from controls. Generally, Salmonella isolates from Asia were resistant to ciprofloxacin and ceftriaxone, but African isolates were susceptible to these antibiotics. CONCLUSIONS: Our data confirm that NTS is prevalent, albeit at low levels, in Africa and South Asia. Our findings provide further evidence that multidrug-resistant Salmonella Typhimurium ST313 can be carried asymptomatically by humans in sub-Saharan Africa.


Subject(s)
Salmonella Infections , Anti-Bacterial Agents/pharmacology , Child , Child, Preschool , Humans , Kenya/epidemiology , Multilocus Sequence Typing , Phylogeny , Salmonella Infections/epidemiology , Salmonella typhimurium/genetics
14.
Nat Microbiol ; 6(3): 327-338, 2021 03.
Article in English | MEDLINE | ID: mdl-33349664

ABSTRACT

Bloodstream infections caused by nontyphoidal Salmonella are a major public health concern in Africa, causing ~49,600 deaths every year. The most common Salmonella enterica pathovariant associated with invasive nontyphoidal Salmonella disease is Salmonella Typhimurium sequence type (ST)313. It has been proposed that antimicrobial resistance and genome degradation has contributed to the success of ST313 lineages in Africa, but the evolutionary trajectory of such changes was unclear. Here, to define the evolutionary dynamics of ST313, we sub-sampled from two comprehensive collections of Salmonella isolates from African patients with bloodstream infections, spanning 1966 to 2018. The resulting 680 genome sequences led to the discovery of a pan-susceptible ST313 lineage (ST313 L3), which emerged in Malawi in 2016 and is closely related to ST313 variants that cause gastrointestinal disease in the United Kingdom and Brazil. Genomic analysis revealed degradation events in important virulence genes in ST313 L3, which had not occurred in other ST313 lineages. Despite arising only recently in the clinic, ST313 L3 is a phylogenetic intermediate between ST313 L1 and L2, with a characteristic accessory genome. Our in-depth genotypic and phenotypic characterization identifies the crucial loss-of-function genetic events that occurred during the stepwise evolution of invasive S. Typhimurium across Africa.


Subject(s)
Evolution, Molecular , Salmonella Infections/microbiology , Salmonella typhimurium/genetics , Sepsis/microbiology , Africa/epidemiology , Drug Resistance, Bacterial , Genetic Variation , Genome, Bacterial/genetics , Genotype , Humans , Phenotype , Phylogeny , Plasmids/genetics , Pseudogenes , Salmonella Infections/epidemiology , Salmonella typhimurium/isolation & purification , Salmonella typhimurium/pathogenicity , Salmonella typhimurium/physiology , Sepsis/epidemiology , Sepsis/transmission , Virulence
15.
PLoS Negl Trop Dis ; 14(11): e0008796, 2020 11.
Article in English | MEDLINE | ID: mdl-33232324

ABSTRACT

Salmonella is a major cause of foodborne disease globally. Pigs can carry and shed non-typhoidal Salmonella (NTS) asymptomatically, representing a significant reservoir for these pathogens. To investigate Salmonella carriage by African domestic pigs, faecal and mesenteric lymph node samples were taken at slaughter in Nairobi, Busia (Kenya) and Chikwawa (Malawi) between October 2016 and May 2017. Selective culture, antisera testing and whole genome sequencing were performed on samples from 647 pigs; the prevalence of NTS carriage was 12.7% in Busia, 9.1% in Nairobi and 24.6% in Chikwawa. Two isolates of S. Typhimurium ST313 were isolated, but were more closely related to ST313 isolates associated with gastroenteritis in the UK than bloodstream infection in Africa. The discovery of porcine NTS carriage in Kenya and Malawi reveals potential for zoonotic transmission of diarrhoeal strains to humans in these countries, but not for transmission of clades specifically associated with invasive NTS disease in Africa.


Subject(s)
Foodborne Diseases/epidemiology , Gastroenteritis/epidemiology , Pork Meat/microbiology , Salmonella Infections, Animal/epidemiology , Salmonella typhimurium/classification , Salmonella typhimurium/isolation & purification , Animals , Bacterial Zoonoses/epidemiology , Bacterial Zoonoses/microbiology , Bacterial Zoonoses/transmission , Drug Resistance, Multiple, Bacterial/genetics , Foodborne Diseases/microbiology , Gastroenteritis/microbiology , Gastroenteritis/veterinary , Humans , Kenya/epidemiology , Lymph Nodes/microbiology , Malawi/epidemiology , Microbial Sensitivity Tests , Molecular Typing , Salmonella Infections, Animal/transmission , Salmonella typhimurium/genetics , Swine/parasitology , Whole Genome Sequencing
16.
PLoS Negl Trop Dis ; 13(7): e0007540, 2019 07.
Article in English | MEDLINE | ID: mdl-31348776

ABSTRACT

Over recent decades, Salmonella infection research has predominantly relied on murine infection models. However, in many cases the infection phenotypes of Salmonella pathovars in mice do not recapitulate human disease. For example, Salmonella Typhimurium ST313 is associated with enhanced invasive infection of immunocompromised people in Africa, but infection of mice and other animal models with ST313 have not consistently reproduced this invasive phenotype. The introduction of alternative infection models could help to improve the quality and reproducibility of pathogenesis research by facilitating larger-scale experiments. To investigate the virulence of S. Typhimurium ST313 in comparison with ST19, a combination of avian and insect disease models were used. We performed experimental infections in five lines of inbred and one line of outbred chickens, as well as in the alternative chick embryo and Galleria mellonella wax moth larvae models. This extensive set of experiments identified broadly similar patterns of disease caused by the African and global pathovariants of Salmonella Typhimurium in the chicken, the chicken embryo and insect models. A comprehensive analysis of all the chicken infection experiments revealed that the African ST313 isolate D23580 had a subtle phenotype of reduced levels of organ colonisation in inbred chickens, relative to ST19 strain 4/74. ST313 isolate D23580 also caused reduced mortality in chicken embryos and insect larvae, when compared with ST19 4/74. We conclude that these three infection models do not reproduce the characteristics of the systemic disease caused by S. Typhimurium ST313 in humans.


Subject(s)
Chickens/microbiology , Insecta/microbiology , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/pathogenicity , Africa , Animals , Chick Embryo , Disease Models, Animal , Larva/microbiology , Moths/microbiology , Reproducibility of Results , Salmonella Infections, Animal/mortality , Salmonella typhimurium/genetics , Virulence
17.
Infect Immun ; 87(9)2019 09.
Article in English | MEDLINE | ID: mdl-31262982

ABSTRACT

In recent years nontyphoidal Salmonella has emerged as one of the pathogens most frequently isolated from the bloodstream in humans. Only a small group of Salmonella serovars cause this systemic infection, known as invasive nontyphoidal salmonellosis. Here, we present a focused minireview on Salmonella enterica serovar Panama, a serovar responsible for invasive salmonellosis worldwide. S Panama has been linked with infection of extraintestinal sites in humans, causing septicemia, meningitis, and osteomyelitis. The clinical picture is often complicated by antimicrobial resistance and has been associated with a large repertoire of transmission vehicles, including human feces and breast milk. Nonhuman sources of S Panama involve reptiles and environmental reservoirs, as well as food animals, such as pigs. The tendency of S Panama to cause invasive disease may be linked to certain serovar-specific genetic factors.


Subject(s)
Salmonella Infections/microbiology , Salmonella enterica/pathogenicity , Drug Resistance, Multiple, Bacterial , Global Health , Humans , Salmonella Infections/transmission , Salmonella enterica/genetics , Virulence
18.
Microbiol Spectr ; 6(5)2018 09.
Article in English | MEDLINE | ID: mdl-30215343

ABSTRACT

Developments in transcriptomic technology and the availability of whole-genome-level expression profiles for many bacterial model organisms have accelerated the assignment of gene function. However, the deluge of transcriptomic data is making the analysis of gene expression a challenging task for biologists. Online resources for global bacterial gene expression analysis are not available for the majority of published data sets, impeding access and hindering data exploration. Here, we show the value of preexisting transcriptomic data sets for hypothesis generation. We describe the use of accessible online resources, such as SalComMac and SalComRegulon, to visualize and analyze expression profiles of coding genes and small RNAs. This approach arms a new generation of "gene detectives" with powerful new tools for understanding the transcriptional networks of Salmonella, a bacterium that has become an important model organism for the study of gene regulation. To demonstrate the value of integrating different online platforms, and to show the simplicity of the approach, we used well-characterized small RNAs that respond to envelope stress, oxidative stress, osmotic stress, or iron limitation as examples. We hope to provide impetus for the development of more online resources to allow the scientific community to work intuitively with transcriptomic data.


Subject(s)
Gene Expression Regulation, Bacterial , Genes, Bacterial/genetics , Transcriptome/physiology , Computational Biology/methods , Databases, Genetic , Gene Expression Profiling , Gene Regulatory Networks/physiology , Iron , Online Systems , Osmotic Pressure , Oxidative Stress , Salmonella/genetics , Stress, Psychological
19.
Environ Microbiol Rep ; 10(4): 428-432, 2018 08.
Article in English | MEDLINE | ID: mdl-29327508

ABSTRACT

Marine picocyanobacteria of the genus Synechococcus are ubiquitous phototrophs in oceanic systems. Consistent with these organisms occupying vast tracts of the nutrient impoverished ocean, most marine Synechococcus so far studied are monoploid, i.e., contain a single chromosome copy. The exception is the oligoploid strain Synechococcus sp. WH7803, which on average possesses around 4 chromosome copies. Here, we set out to understand the role of resource availability (through nutrient deplete growth) and physical stressors (UV, exposure to low and high temperature) in regulating ploidy level in this strain. Using qPCR to assay ploidy status we demonstrate the relative stability of chromosome copy number in Synechococcus sp. WH7803. Such robustness in maintaining an oligoploid status even under nutrient and physical stress is indicative of a fundamental role, perhaps facilitating recombination of damaged DNA regions as a result of prolonged exposure to oxidative stress, or allowing added flexibility in gene expression via possessing multiple alleles.


Subject(s)
Ploidies , Synechococcus/growth & development , Synechococcus/genetics , Chromosomes, Bacterial/genetics , DNA, Bacterial/genetics , Stress, Physiological
20.
FEMS Microbiol Lett ; 363(15)2016 08.
Article in English | MEDLINE | ID: mdl-27338950

ABSTRACT

Marine viruses are the most abundant biological entity in the oceans, the majority of which infect bacteria and are known as bacteriophages. Yet, the bulk of bacteriophages form part of the vast uncultured dark matter of the microbial biosphere. In spite of the paucity of cultured marine bacteriophages, it is known that marine bacteriophages have major impacts on microbial population structure and the biogeochemical cycling of key elements. Despite the ecological relevance of marine bacteriophages, there are relatively few isolates with complete genome sequences. This minireview focuses on knowledge gathered from these genomes put in the context of viral metagenomic data and highlights key advances in the field, particularly focusing on genome structure and auxiliary metabolic genes.


Subject(s)
Bacteriophages/genetics , Genome, Viral , Metagenomics , Oceans and Seas , Seawater/microbiology , Bacteria/virology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...