Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Small ; : e2401627, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773906

ABSTRACT

Controlling the magnetic anisotropy of molecular layers assembled on a surface is one of the challenges that needs to be addressed to create the next-generation spintronic devices. Recently, metal complexes that show a reversible solid-state switch of their magnetic anisotropy in response to physical stimuli, such as temperature and magnetic field, have been discovered. The complex Nd(trensal) (H3trensal = 2,2',2''-tris(salicylideneimino)triethylamine) is predicted to exhibit such property. An ultra-thin film of Nd(trensal) is deposited on highly ordered pyrolytic graphite as a proof-of-concept system to show that this property can be retained at the nanoscale on a layered material. By combining single crystal magnetometric measurements and synchrotron X-ray-based absorption techniques, supported by multiplet ligand field simulations based on the trigonal crystal field surrounding the lanthanide centre, it is demonstrated that changing the temperature reverses the magnetic anisotropy of an ordered film of Nd(trensal), thus opening significant perspectives for the realization of a novel family of temperature-controlled molecular spintronic devices.

2.
Inorg Chem ; 63(21): 9588-9601, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38557081

ABSTRACT

We introduce the boryloxide ligand {(HCNDipp)2BO}- (NBODipp, Dipp = 2,6-di-isopropylphenyl) to actinide chemistry. Protonolysis of [U{N(SiMe3)2}3] with 3 equiv of NBODippH produced the uranium(III) tris(boryloxide) complex [U(NBODipp)3] (1). In contrast, treatment of UCl4 with 3 equiv of NBODippK in THF at room temperature or reflux conditions produced only [U(NBODipp)2(Cl)2(THF)2] (2) with 1 equiv of NBODippK remaining unreacted. However, refluxing the mixture of 2 and unreacted NBODippK in toluene instead of THF afforded the target complex [U(NBODipp)3(Cl)(THF)] (3). Two-electron oxidation of 1 with AdN3 (Ad = 1-adamantyl) afforded the uranium(V)-imido complex [U(NBODipp)3(NAd)] (4). The solid-state structure of 1 reveals a uranium-arene bonding motif, and structural, spectroscopic, and DFT calculations all suggest modest uranium-arene δ-back-bonding with approximately equal donation into the arene π4 and π5 δ-symmetry π* molecular orbitals. Complex 4 exhibits a short uranium(V)-imido distance, and computational modeling enabled its electronic structure to be compared to related uranium-imido and uranium-oxo complexes, revealing a substantial 5f-orbital crystal field splitting and extensive mixing of 5f |ml,ms⟩ states and mj projections. Complexes 1-4 have been variously characterized by single-crystal X-ray diffraction, 1H NMR, IR, UV/vis/NIR, and EPR spectroscopies, SQUID magnetometry, elemental analysis, and CONDON, F-shell, DFT, NLMO, and QTAIM crystal field and quantum chemical calculations.

3.
Chem Sci ; 15(1): 113-123, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38131074

ABSTRACT

Complexes of lanthanide(iii) ions (Ln) with tetraazacyclododecane-N,N',N'',N'''-tetraacetate (DOTA) are a benchmark in the field of magnetism due to their well-investigated and sometimes surprising features. Ab initio calculations suggest that the ninth ligand, an axial water molecule, is key in defining the magnetic properties because it breaks the potential C4 symmetry of the resulting complexes. In this paper, we experimentally isolate the role of the water molecule by excluding it from the metal coordination sphere without altering the chemical structure of the ligand. Our complexes are therefore designed to be geometrically tetragonal and strict crystallographic symmetry is achieved by exploiting a combination of solution ionic strength and solid state packing effects. A thorough multitechnique approach has been used to unravel the electronic structure and magnetic anisotropy of the complexes. Moreover, the geometry enhancement allows us to predict, using only one angle obtained from the crystal structure, the ground state composition of all the studied derivatives (Ln = Tb to Yb). Therefore, these systems also provide an excellent platform to test the validity and limitations of the ab initio methods. Our combined experimental and theoretical investigation proves that the water molecule is indeed key in defining the magnetic anisotropy and the slow relaxation of these complexes.

4.
Chem Sci ; 14(2): 266-276, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36687355

ABSTRACT

Record-breaking magnetic exchange interactions have previously been reported for 3d-metal dimers of the form [M(Pt(SAc)4)(pyNO2)]2 (M = Ni or Co) that are linked in the solid state via metallophilic Pt⋯Pt bridges. This contrasts the terminally capped monomers [M(Pt(SAc)4)(py)2], for which neither metallophilic bridges nor magnetic exchange interactions are found. Computational modeling has shown that the magnetic exchange interaction is facilitated by the pseudo-closed shell d8⋯d8 metallophilic interaction between the filled Pt2+ 5d z 2 orbitals. We present here inelastic neutron scattering experiments on these complexes, wherein the dimers present an oscillatory momentum-transfer-dependence of the magnetic transitions. This allows for the unequivocal experimental assignment of the distance between the coupled ions, which matches exactly the coupling pathway via the metallophilic bridges. Furthermore, we have synthesized and magnetically characterized the isostructural palladium-analogues. The magnetic coupling across the Pd⋯Pd bridge is found through SQUID-magnetometry and FD-FT THz-EPR spectroscopy to be much weaker than via the Pt⋯Pt bridge. The weaker coupling is traced to the larger radial extent of the 5d z 2 orbitals compared to that of the 4d z 2 orbitals. The existence of a palladium metallophilic interaction is evaluated computationally from potential surface cuts along the metal stretching direction. Similar behavior is found for the Pd⋯Pd and Pt⋯Pt-systems with clear minima along this coordinate and provide estimates for the force constant for this distortion. The estimated M⋯M stretching frequencies are found to match experimental observed, polarized bands in single-crystal Raman spectra close to 45 cm-1. This substantiates the existence of energetically relevant Pd⋯Pd metallophilic interactions. The unique properties of both Pt2+ and Pd2+ constitutes an orthogonal reactivity, which can be utilized for steering both the direction and strength of magnetic interactions.

5.
Int J Mol Sci ; 23(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36362089

ABSTRACT

Ovarian cancer recurrence is frequent and associated with chemoresistance, leading to extremely poor prognosis. Herein, we explored the potential anti-cancer effect of a series of highly charged Ru(II)-polypyridyl complexes as photosensitizers in photodynamic therapy (PDT), which were able to efficiently sensitize the formation of singlet oxygen upon irradiation (Ru12+ and Ru22+) and to produce reactive oxygen species (ROS) in their corresponding dinuclear metal complexes with the Fenton active Cu(II) ion/s ([CuRu1]4+ and [Cu2Ru2]6+). Their cytotoxic and anti-tumor effects were evaluated on human ovarian cancer A2780 cells both in the absence or presence of photoirradiation, respectively. All the compounds tested were well tolerated under dark conditions, whereas they switched to exert anti-tumor activity following photoirradiation. The specific effect was mediated by the onset of programed cell death, but only in the case of Ru12+ and Ru22+ was preceded by the loss of mitochondrial membrane potential soon after photoactivation and ROS production, thus supporting the occurrence of apoptosis via type II photochemical reactions. Thus, Ru(II)-polypyridyl-based photosensitizers represent challenging tools to be further investigated in the identification of new therapeutic approaches to overcome the innate chemoresistance to platinum derivatives of some ovarian epithelial cancers and to find innovative drugs for recurrent ovarian cancer.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ovarian Neoplasms , Photochemotherapy , Ruthenium , Humans , Female , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Ruthenium/pharmacology , Ruthenium/chemistry , Carcinoma, Ovarian Epithelial/drug therapy , Cell Line, Tumor , Reactive Oxygen Species , HeLa Cells , Ovarian Neoplasms/drug therapy , Neoplasm Recurrence, Local , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
6.
Chem Sci ; 13(20): 5860-5871, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35685802

ABSTRACT

A common criterion for designing performant single molecule magnets and pseudocontact shift tags is a large magnetic anisotropy. In this article we present a dysprosium complex chemically designed to exhibit strong easy-axis type magnetic anisotropy that is preserved in dichloromethane solution at room temperature. Our detailed theoretical and experimental studies on the magnetic properties allowed explaining several features typical of highly performant SMMs. Moreover, the NMR characterization shows remarkably large chemical shifts, outperforming the current state-of-the art PCS tags.

7.
Nat Chem ; 14(3): 342-349, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35145247

ABSTRACT

Neptunium was the first actinide element to be artificially synthesized, yet, compared with its more famous neighbours uranium and plutonium, is less conspicuously studied. Most neptunium chemistry involves the neptunyl di(oxo)-motif, and transuranic compounds with one metal-ligand multiple bond are rare, being found only in extended-structure oxide, fluoride or oxyhalide materials. These combinations stabilize the required high oxidation states, which are otherwise challenging to realize for transuranic ions. Here we report the synthesis, isolation and characterization of a stable molecular neptunium(V)-mono(oxo) triamidoamine complex. We describe a strong Np≡O triple bond with dominant 5f-orbital contributions and σu > πu energy ordering, akin to terminal uranium-nitrides and di(oxo)-actinyls, but not the uranium-mono(oxo) triple bonds or other actinide multiple bonds reported so far. This work demonstrates that molecular high-oxidation-state transuranic complexes with a single metal-ligand bond can be stabilized and studied in isolation.

8.
J Chem Phys ; 155(21): 214201, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34879662

ABSTRACT

Longitudinal and transverse 1H nuclear magnetic resonance relaxivities of Ln(III)-DOTA complexes (with Ln = Gd, Tb, Dy, Er; DOTA = 1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid) and Mn(II) aqueous solutions were measured in a wide range of frequencies, 10 kHz to 700 MHz. The experimental data were interpreted by means of models derived from the Solomon-Bloembergen-Morgan theory. The data analysis was performed assuming the orbital angular momentum L = 0 for Gd-DOTA and the aqua ion [Mn(H2O)6]2+ and L ≠ 0 for Dy-, Tb-, and Er-DOTA. A refined estimation of the zero-field-splitting barrier Δ and of the modulation correlation time τv was obtained for [Mn(H2O)6]2+ by extending the fitting of nuclear magnetic relaxation dispersion profiles to the low-field regime. The Gd-DOTA fitting parameters resulted in good agreement with the literature, and the fit of transverse relaxivity data confirmed the negligibility of the scalar interaction in the nuclear relaxation mechanism. Larger transverse relaxivities of Dy-DOTA and Tb-DOTA (∼10 mM-1 s-1) with respect to Er-DOTA (∼1 mM-1 s-1) were observed at 16 T. Such higher values are suggested to be due to a shorter residence time τm that is possibly linked to the fluctuations of the hyperfine interaction and the different shape of the magnetic anisotropy. The possible employment of Dy-DOTA, Tb-DOTA, and Er-DOTA as negative magnetic resonance imaging contrast agents for high-field applications was envisaged by collecting spin-echo images at 7 T. Particularly in Dy- and Tb-derivatives, the transverse relaxivity at 16 T is of the order of the Gd-one at 1.5 T.

9.
J Am Chem Soc ; 143(21): 8108-8115, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34024105

ABSTRACT

The combined experimental and computational study of the 13 magnetic complexes belonging to the Na[LnDOTA(H2O)] (H4DOTA = tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid and Ln = Ce-Yb) family allowed us to identify a new trend: the orientation of the magnetic anisotropy tensors of derivatives differing by seven f electrons practically coincide. We name this trend the fn+7 effect. Experiments and theory fully agree on the match between the magnetic reference frames (e.g., the easy, intermediate, and hard direction). The shape of the magnetic anisotropy of some couples of ions differing by seven f electrons might seem instead different at first look, but our analysis explains a hidden similarity. We thus pave the way toward a reliable predictivity of the magnetic anisotropy of lanthanide complexes with a consequent reduced need of computational and synthetical efforts. We also offer a way to gain information on ions with a relatively small total angular momentum (i.e., Sm3+ and Eu3+) and on the radioactive Pm3+, which are difficult to investigate experimentally.

10.
J Inorg Biochem ; 220: 111467, 2021 07.
Article in English | MEDLINE | ID: mdl-33932708

ABSTRACT

The antimicrobial potential of two ruthenium(II) polypyridyl complexes, [Ru(phen)2L1]2+ and [Ru(phen)2L2]2+ (phen = 1,10-phenanthroline) containing the 4,4'-(2,5,8,11,14-pentaaza[15])-2,2'-bipyridilophane (L1) and the 4,4'-bis-[methylen-(1,4,7,10-tetraazacyclododecane)]-2,2' bipyridine (L2) units, is herein investigated. These peculiar polyamine frameworks afford the formation of highly charged species in solution, influence the DNA-binding and cleavage properties of compounds, but they do not undermine their singlet oxygen sensitizing capacities, thus making these complexes attractive 1O2 generators in aqueous solution. L1 and L2 also permit to stably host Fenton -active Cu2+ ion/s, leading to the formation of mixed Ru2+/Cu2+ forms capable to further strengthen the oxidative damages to biological targets. Herein, following a characterization of the Cu2+ binding ability by [Ru(phen)2L2]2+, the water-octanol distribution coefficients, the DNA binding, cleavage and 1O2 sensitizing properties of [Ru(phen)2L2]2+ and [Cu2Ru(phen)2L2]6+ were analysed and compared with those of [Ru(phen)2L1]2+ and [CuRu(phen)2L1]4+. The antimicrobial activity of all compounds was evaluated against B. subtilis, chosen as a model for gram-positive bacteria, both under dark and upon light-activation. Our results unveil a notable phototoxicity of [Ru(phen)2L2]2+ and [Cu2Ru(phen)2L2]6+, with MIC (minimal inhibitory concentrations) values of 3.12 µM. This study highlights that the structural characteristics of polyamine ligands gathered on highly charged Ru(II)-polypyridyl complexes are versatile tools that can be exploited to achieve enhanced antibacterial strategies.


Subject(s)
Anti-Bacterial Agents/pharmacology , Coordination Complexes/pharmacology , Pyridines/pharmacology , Animals , Anti-Bacterial Agents/radiation effects , Bacillus subtilis/drug effects , Cattle , Coordination Complexes/radiation effects , Copper/chemistry , Copper/radiation effects , DNA/drug effects , DNA Cleavage/drug effects , Ligands , Microbial Sensitivity Tests , Pyridines/radiation effects , Ruthenium/chemistry , Ruthenium/radiation effects , Singlet Oxygen/metabolism
11.
Inorg Chem ; 59(22): 16591-16598, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33119277

ABSTRACT

A series of isomorphous mononuclear complexes of Ln(III) ions comprising one stable tripodal oxazolidine nitroxyl radical were obtained in acetonitrile media starting from nitrates. The compounds, [LnRad(NO3)3] (Ln = Gd, Tb, Dy, Tm, Y; Rad = 4,4-dimethyl-2,2-bis(pyridin-2-yl)-1,3-oxazolidine-3-oxyl), have a molecular structure. Their coordination polyhedron, LnO7N2, can be described as a tricapped trigonal prism with symmetry not far from D3h. The extracted value of 23 cm-1 for the antiferromagnetic coupling of Gd-Rad established from the DC magnetic and EPR data is a record strength for the complexes of 4f elements with nitroxyl radicals. The terbium derivative displays frequency-dependent out-of-phase signals in zero field, indicating single-molecule magnetic behavior. With an applied field of 0.1 T, an effective barrier of 57 cm-1 is found.

12.
Chem Commun (Camb) ; 56(75): 11062-11065, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32812571

ABSTRACT

The new PtVO(SOCR)4 lantern complexes, 1 (R = CH3) and 2 (R = Ph) behave as neutral O-donor ligands to Ln(OR)3 with Ln = Ce, Nd. Four heterotrimetallic complexes with linear {LnOVPt} units were prepared: [Ln(ODtbp)3{PtVO(SOCR)4}] (Ln = Ce, 3Ce (R = CH3), 4Ce (R = Ph); Nd, 3Nd (R = CH3), 4Nd (R = Ph); ODtbp = 2,6-ditertbutylphenolate). Magnetic characterization confirms slow magnetic relaxation behaviour and suggests antiferromagnetic coupling across {Ln-O[double bond, length as m-dash]V} in all four complexes, with variations tunable as a function of Ln and R.

13.
Chemistry ; 26(49): 11293-11306, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32519790

ABSTRACT

The isostructural compounds of the trivalent actinides uranium, neptunium, plutonium, americium, and curium with the hydridotris(1-pyrazolyl)borato (Tp) ligand An[η3 -HB(N2 C3 H3 )3 ]3 (AnTp3 ) have been obtained through several synthetic routes. Structural, spectroscopic (absorption, infrared, laser fluorescence) and magnetic characterisation of the compounds were performed in combination with crystal field, density functional theory (DFT) and relativistic multiconfigurational calculations. The covalent bonding interactions were analysed in terms of the natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) models.

14.
Inorg Chem ; 59(1): 235-243, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31825607

ABSTRACT

In this paper, we experimentally study and model the electron donating character of an axial diamagnetic Pd2+ ion in four metalloligated lanthanide complexes of formula [PPh4][Ln{Pd(SAc)4}2] (SAc- = thioacetate, Ln = Tb, Dy, Ho, and Er). A global model encompassing inelastic neutron scattering, torque magnetometry, and dc magnetometry allows to precisely determine the energy level structure of the complexes. Solid state nuclear magnetic resonance reveals a less donating character of Pd2+ compared to the previously reported isostructural Pt2+-based complexes. Consequently, all complexes invariably show a lower crystal field strength compared to their Pt2+-analogues. The dynamic properties show an enhanced single molecule magnet behavior due to the suppression of quantum tunneling, in agreement with our model.

15.
Inorg Chem ; 58(18): 11875-11882, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31067042

ABSTRACT

The notion of magnetic anisotropy is very central to the field of molecule-based magnetism, where it is considered to be a key quantity that must be rationalized and controlled in order to improve the performances of, e.g., single-molecule magnets. A rough classification of the magnetic properties is widely done in terms of the qualitative descriptors of magnetic anisotropy: "easy-axis" and "easy-plane". They can be based on different physical properties, in casu: free energy, magnetization, or magnetic susceptibility. However, this degree of freedom leads in some cases, including very simple ones like [V(H2O)6]3+, to incommensurate descriptions of a system being simultaneously easy-axis and easy-plane, depending only on the choice of the physical quantity on which the descriptor is based. Moreover, it has recently been pointed out that the magnetic anisotropy of a chemical system can be addressed and switched using external stimuli like temperature and magnetic field. These external parameters are, though, not the only ones capable of triggering anisotropy switching for actual chemical systems under experimentally relevant conditions. Indeed, this applies also to pressure, as discussed here. In this paper, we try to illustrate the multifaceted nature of magnetic anisotropy and assist the overview using anisotropy phase diagrams.

17.
Chem Sci ; 10(7): 2101-2110, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30842867

ABSTRACT

We present the in-depth determination of the magnetic properties and electronic structure of the luminescent and volatile dysprosium-based single molecule magnet [Dy2(bpm)(fod)6] (Hfod = 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione, bpm = 2,2'-bipyrimidine). Ab initio calculations were used to obtain a global picture of the electronic structure and to predict possible single molecule magnet behaviour, confirmed by experiments. The orientation of the susceptibility tensor was determined by means of cantilever torque magnetometry. An experimental determination of the electronic structure of the lanthanide ion was obtained combining Luminescence, Far Infrared and Magnetic Circular Dichroism spectroscopies. Fitting these energies to the full single ion plus crystal field Hamiltonian allowed determination of the eigenstates and crystal field parameters of a lanthanide complex without symmetry idealization. We then discuss the impact of a stepwise symmetry idealization on the modelling of the experimental data. This result is particularly important in view of the misleading outcomes that are often obtained when the symmetry of lanthanide complexes is idealized.

18.
Front Chem ; 7: 6, 2019.
Article in English | MEDLINE | ID: mdl-30733942

ABSTRACT

In the search for new single molecule magnets (SMM), i.e., molecular systems that can retain their magnetization without the need to apply an external magnetic field, a successful strategy is to associate 3d and 4f ions to form molecular coordination clusters. In order to efficiently design such systems, it is necessary to chemically project both the magnetic building blocks and the resultant interaction before the synthesis. Lanthanide ions can provide the required easy axis magnetic anisotropy that hampers magnetization reversal. In the rare examples of 3d/4f SMMs containing CrIII ions, the latter turn out to act as quasi-isotropic anchors which can also interact via 3d-4f coupling to neighbouring Ln centres. This has been demonstrated in cases where the intramolecular exchange interactions mediated by CrIII ions effectively reduce the efficiency of tunnelling without applied magnetic field. However, describing such high nuclearity systems remains challenging, from both experimental and theoretical perspectives, because the overall behaviour of the molecular cluster is heavily affected by the orientation of the individual anisotropy axes. These are in general non-collinear to each other. In this article, we combine single crystal SQUID and torque magnetometry studies of the octanuclear [Cr4Dy4(µ3-OH)4(µ-N3)4(mdea)4(piv)8]·3CH2Cl2 single molecule magnet (piv=pivalate and mdea=N-methyldiethanol amine). These experiments allowed us to probe the magnetic anisotropy of this complex which displays slow magnetization dynamics due to the peculiar arrangement of the easy-axis anisotropy on the Dy sites. New ab initio calculations considering the entire cluster are in agreement with our experimental results.

19.
Chemistry ; 25(7): 1758-1766, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30403293

ABSTRACT

Early actinide ions have large spin-orbit couplings and crystal field interactions, leading to large anisotropies. The success in using actinides as single-molecule magnets has so far been modest, underlining the need for rational strategies. Indeed, the electronic structure of actinide single-molecule magnets and its relation to their magnetic properties remains largely unexplored. A uranium(III) single-molecule magnet, [UIII {SiMe2 NPh}3 -tacn)(OPPh3 )] (tacn=1,4,7-triazacyclononane), has been investigated by means of a combination of magnetic, spectroscopic and theoretical methods to elucidate the origin of its static and dynamic magnetic properties.

20.
Science ; 362(6421)2018 12 21.
Article in English | MEDLINE | ID: mdl-30442763

ABSTRACT

Orbital angular momentum is a prerequisite for magnetic anisotropy, although in transition metal complexes it is typically quenched by the ligand field. By reducing the basicity of the carbon donor atoms in a pair of alkyl ligands, we synthesized a cobalt(II) dialkyl complex, Co(C(SiMe2ONaph)3)2 (where Me is methyl and Naph is a naphthyl group), wherein the ligand field is sufficiently weak that interelectron repulsion and spin-orbit coupling play a dominant role in determining the electronic ground state. Assignment of a non-Aufbau (d x 2 -y 2 , d xy )3(d xz , d yz )3(d z 2 )1 electron configuration is supported by dc magnetic susceptibility data, experimental charge density maps, and ab initio calculations. Variable-field far-infrared spectroscopy and ac magnetic susceptibility measurements further reveal slow magnetic relaxation via a 450-wave number magnetic excited state.

SELECTION OF CITATIONS
SEARCH DETAIL
...