Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Cytometry A ; 97(7): 674-680, 2020 07.
Article in English | MEDLINE | ID: mdl-32488957

ABSTRACT

In response to the recent COVID-19 pandemic, many laboratories are involved in research supporting SARS-CoV-2 vaccine development and clinical trials. Flow cytometry laboratories will be responsible for a large part of this effort by sorting unfixed antigen-specific lymphocytes. Therefore, it is critical and timely that we have an understanding of risk assessment and established procedures of infectious cell sorting. Here we present procedures covering the biosafety aspects of sorting unfixed SARS-CoV-2-infected cells and other infectious agents of similar risk level. These procedures follow the ISAC Biosafety Committee guidelines and were recently approved by the National Institutes of Health Institutional Biosafety Committee for sorting SARS-CoV-2-infected cells. © 2020 International Society for Advancement of Cytometry.


Subject(s)
Betacoronavirus/isolation & purification , Containment of Biohazards/methods , Coronavirus Infections/prevention & control , Flow Cytometry/methods , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Specimen Handling/methods , COVID-19 , Coronavirus Infections/diagnosis , Humans , Laboratories/standards , Medical Laboratory Personnel/standards , Pneumonia, Viral/diagnosis , Risk Assessment , SARS-CoV-2
2.
J Extracell Vesicles ; 8(1): 1597603, 2019.
Article in English | MEDLINE | ID: mdl-31258878

ABSTRACT

Biological nanoparticles, including viruses and extracellular vesicles (EVs), are of interest to many fields of medicine as biomarkers and mediators of or treatments for disease. However, exosomes and small viruses fall below the detection limits of conventional flow cytometers due to the overlap of particle-associated scattered light signals with the detection of background instrument noise from diffusely scattered light. To identify, sort, and study distinct subsets of EVs and other nanoparticles, as individual particles, we developed nanoscale Fluorescence Analysis and Cytometric Sorting (nanoFACS) methods to maximise information and material that can be obtained with high speed, high resolution flow cytometers. This nanoFACS method requires analysis of the instrument background noise (herein defined as the "reference noise"). With these methods, we demonstrate detection of tumour cell-derived EVs with specific tumour antigens using both fluorescence and scattered light parameters. We further validated the performance of nanoFACS by sorting two distinct HIV strains to >95% purity and confirmed the viability (infectivity) and molecular specificity (specific cell tropism) of biological nanomaterials sorted with nanoFACS. This nanoFACS method provides a unique way to analyse and sort functional EV- and viral-subsets with preservation of vesicular structure, surface protein specificity and RNA cargo activity.

3.
Cytometry A ; 95(2): 173-182, 2019 02.
Article in English | MEDLINE | ID: mdl-30561906

ABSTRACT

Today's state-of-the-art cell sorting flow cytometers are equipped with aerosol containment systems designed to evacuate aerosols from the sort chamber during a sort. This biosafety device is especially important when the sort operator is sorting infectious or potentially infections samples. Hence, it is critical to evaluate the performance for this system in normal operation and in "failure" mode to determine the efficacy of containment. In the past decade, the most popular published method for evaluating containment has been the Glo-Germ bead procedure. These highly fluorescent and multisize particles can easily be detected on a microscope slide and enumerated using a fluorescent microscope. Collecting particles on this slide is accomplished using an Aerotech impactor. This sampler collects potentially escaping aerosols from the sort chamber before enumerating any particles. Although the Glo-Germ procedure has been adopted by many labs, there are several drawbacks with the procedure that have limited its adoption by cell sorter laboratories: The Aerotech impactor is a reusable device that requires rigorous cleaning between measurements. The surface area of the collection slide is large and difficult to scan on a fluorescence microscope. These beads produce a wide variation in sizes resulting in inconsistency in flow rates. Here, we describe a novel and replacement method utilizing a Cyclex-d impactor and Dragon Green beads. This method was compared for sensitivity of detection of escaped aerosols with a published method for aerosol detection which utilizes a UV-APS aerodynamic particle sizer and a UV-excitable dye. One of the advantages of the Cyclex-d system is the narrow-defined field of collection as compared to the standard Glo-Germ bead procedure, this means a smaller sampling area is used in the Cyclex-d impactor as compared to the AeroTech impactor. In addition, the sensitivity of detection was found to be better using the Cyclex-d collection device as compared to the standard Glo-Germ bead procedure. © 2018 International Society for Advancement of Cytometry.


Subject(s)
Aerosols/analysis , Biological Assay/methods , Flow Cytometry/methods , Hazardous Substances/chemistry , Cell Separation/methods , Containment of Biohazards/methods , Equipment Contamination/prevention & control , Equipment Design/methods , Laboratories , Microscopy, Fluorescence/methods , Microspheres , Particle Size
4.
Cytometry A ; 93(11): 1087-1091, 2018 11.
Article in English | MEDLINE | ID: mdl-30244531

ABSTRACT

We demonstrate improved methods for making valid and accurate comparisons of fluorescence measurement capabilities among instruments tested at different sites and times. We designed a suite of measurements and automated data processing methods to obtain consistent objective results and applied them to a selection of 23 instruments at nine sites to provide a range of instruments as well as multiple instances of similar instruments. As far as we know, this study represents the most accurate methods and results so far demonstrated for this purpose. The first component of the study reporting improved methods for photoelectron scale (Spe) evaluations, which was published previously (Parks, El Khettabi, Chase, Hoffman, Perfetto, Spidlen, Wood, Moore, and Brinkman: Cytometry A 91 (2017) 232-249). Those results which were within themselves are not sufficient for instrument comparisons, so here, we use the Spe scale results for the 23 cytometers and combine them with additional information from the analysis suite to obtain the metrics actually needed for instrument evaluations and comparisons. We adopted what we call the 2+2SD limit of resolution as a maximally informative metric, for evaluating and comparing dye measurement sensitivity among different instruments and measurement channels. Our results demonstrate substantial differences among different classes of instruments in both dye response and detection sensitivity and some surprisingly large differences among similar instruments, even among instruments with nominally identical configurations. On some instruments, we detected defective measurement channels needing service. The system can be applied in shared resource laboratories and other facilities as an aspect of quality assurance, and accurate instrument comparisons can be valuable for selecting instruments for particular purposes and for making informed instrument acquisition decisions. An institutionally supported program could serve the cytometry community by facilitating access to materials, and analysis and maintaining an archive of results. © 2018 International Society for Advancement of Cytometry.


Subject(s)
Flow Cytometry/instrumentation , Flow Cytometry/methods , Calibration , Humans
5.
Cytometry A ; 91(3): 232-249, 2017 03.
Article in English | MEDLINE | ID: mdl-28160404

ABSTRACT

We developed a fully automated procedure for analyzing data from LED pulses and multilevel bead sets to evaluate backgrounds and photoelectron scales of cytometer fluorescence channels. The method improves on previous formulations by fitting a full quadratic model with appropriate weighting and by providing standard errors and peak residuals as well as the fitted parameters themselves. Here we describe the details of the methods and procedures involved and present a set of illustrations and test cases that demonstrate the consistency and reliability of the results. The automated analysis and fitting procedure is generally quite successful in providing good estimates of the Spe (statistical photoelectron) scales and backgrounds for all the fluorescence channels on instruments with good linearity. The precision of the results obtained from LED data is almost always better than that from multilevel bead data, but the bead procedure is easy to carry out and provides results good enough for most purposes. Including standard errors on the fitted parameters is important for understanding the uncertainty in the values of interest. The weighted residuals give information about how well the data fits the model, and particularly high residuals indicate bad data points. Known photoelectron scales and measurement channel backgrounds make it possible to estimate the precision of measurements at different signal levels and the effects of compensated spectral overlap on measurement quality. Combining this information with measurements of standard samples carrying dyes of biological interest, we can make accurate comparisons of dye sensitivity among different instruments. Our method is freely available through the R/Bioconductor package flowQB. © 2017 International Society for Advancement of Cytometry.


Subject(s)
Flow Cytometry/methods , Models, Theoretical , Optical Imaging/methods , Calibration , Flow Cytometry/statistics & numerical data , Least-Squares Analysis
6.
Cytometry A ; 85(12): 1037-48, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25346474

ABSTRACT

Much of the complexity of multicolor flow cytometry experiments lies within the development of antibody staining panels and the standardization of instruments. In this article, we propose a theoretical metric and describe how measurements of sensitivity and resolution can be used to predict the success of panels, and ensure that performance across instruments is standardized (i.e., inter-instrument standardization). Sensitivity can be determined by summing two major contributors of background, background originating from the instrument (optical noise and electronic noise) and background due to the experimental conditions (i.e., Raman scatter, and spillover spreading arising from other fluorochromes in the panel). The former we define as Bcal and the latter we define as Bsos . The combination of instrument and experiment background is defined as Btot . Importantly, the Btot will affect the degree of panel separation, therefore the greater the degree of Btot the lower the separation potential. In contrast, resolution is a measure of separation between populations. Resolution is directly proportional to the number of photoelectrons generated per molecule of excited fluorochrome and is known as the "Q" value. Q and Btot values can be used to define the performance of each detector on an instrument and together they can be used to calculate a separation index. Hence, detectors with known Q and Btot values can be used to evaluate panel success based on the detector specific separation index. However, the current technologies do not enable measurements of Q and Btot values for all parameters, but new technology to allow these measurements will likely be introduced in the near future. Nonetheless, Q and Btot measurements can aid in panel development, and reveal sources of instrument-to-instrument variation in panel performance. In addition, Q and B values can form the basis for a comprehensive and versatile quality assurance program.


Subject(s)
Flow Cytometry/instrumentation , Flow Cytometry/standards , Flow Cytometry/methods , Humans
7.
Cytometry A ; 85(5): 434-53, 2014 May.
Article in English | MEDLINE | ID: mdl-24634405

ABSTRACT

Flow cytometric cell sorting of biological specimens has become prevalent in basic and clinical research laboratories. These specimens may contain known or unknown infectious agents, necessitating precautions to protect instrument operators and the environment from biohazards arising from the use of sorters. To this end the International Society of Analytical Cytology (ISAC) was proactive in establishing biosafety guidelines in 1997 (Schmid et al., Cytometry 1997;28:99-117) and subsequently published revised biosafety standards for cell sorting of unfixed samples in 2007 (Schmid et al., Cytometry Part A J Int Soc Anal Cytol 2007;71A:414-437). Since their publication, these documents have become recognized worldwide as the standard of practice and safety precautions for laboratories performing cell sorting experiments. However, the field of cytometry has progressed since 2007, and the document requires an update. The new Standards provides guidance: (1) for laboratory design for cell sorter laboratories; (2) for the creation of laboratory or instrument specific Standard Operating Procedures (SOP); and (3) on procedures for the safe operation of cell sorters, including personal protective equipment (PPE) and validation of aerosol containment.


Subject(s)
Cell Separation/methods , Flow Cytometry , Safety Management/standards , Societies, Scientific , Cell Separation/standards , Equipment Contamination , Flow Cytometry/methods , Flow Cytometry/standards , Hazardous Substances , Humans , Laboratories/standards , Occupational Health
8.
Nat Protoc ; 7(12): 2067-79, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23138348

ABSTRACT

The quality assurance program presented here provides a means to maximize and maintain the performance of individual flow cytometers in a facility. To optimize performance, we recommend performing all three steps (optimization, calibration and standardization) in this program when a new flow cytometer is installed or whenever the flow cytometer's optical path is altered (e.g., lasers, filters or detectors are replaced). The complete process requires 3-4 h. On a more frequent basis, only a subset of these procedures need to be performed as a part of daily maintenance routines. The data generated can be tracked to monitor the instrument and determine whether service is needed. In addition, the data can provide a metric for whether repairs and upgrades have improved or harmed performance, and for future instrument-to-instrument comparisons. In sum, the procedures presented here represent an updated framework for optimizing, calibrating and standardizing a flow cytometer for daily use.


Subject(s)
Flow Cytometry/instrumentation , Flow Cytometry/methods , Calibration , Fluorescent Dyes , Quality Control
9.
Cytometry A ; 79(1): 84-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21182185

ABSTRACT

Quantum dots (QD) are fluorescent nanocrystals that are highly useful in imaging and flow cytometric analyses. During routine use of monoclonal antibody conjugates of QD, we have occasionally seen partial or total loss of fluorescence when using certain lots of fixative solutions. We hypothesized that a low level contamination with heavy metal cations was responsible, since low level metal contaminants are not uncommon in formalin solutions. By titrating known concentrations of heavy metal cations into staining solutions, we found that millimolar concentrations of ferrous and zinc ions, and as low as 50 nanomolar cupric ions, completely eliminated QD fluorescence. By mass spectroscopic quantification of metals in commercial fixative solutions previously shown to perform poorly or well with regard to QD fluorescence, we confirmed that the presence of copper in solution was correlated with poor performance. Notably, prior addition of EDTA to chelate the divalent cations in these solutions prevented the inhibition of QD fluorescence. Finally, the copper-induced loss of QD fluorescence is irreversible: cells labeled with QD are highly fluorescent and can be rendered nonfluorescent by the addition of cupric sulfate, even after washing extensively. Indeed, these cells can then be successfully stained with other QD reagents, providing a method for immunofluorescence restaining of cells without contaminating fluorescence from the first stain.


Subject(s)
Copper/analysis , Iron/analysis , Quantum Dots , Zinc/analysis , Fixatives/chemistry , Flow Cytometry/methods , Fluorescence , Formaldehyde , Humans , Indicators and Reagents , Ions , Leukocytes, Mononuclear/chemistry
10.
Methods Mol Biol ; 699: 449-69, 2011.
Article in English | MEDLINE | ID: mdl-21116997

ABSTRACT

Over the past decade, there has been a rapid growth in the number of BSL-3 and BSL-4 laboratories in the USA and an increase in demand for infectious cell sorting in BSL-3 laboratories. In 2007, the International Society for Advancement of Cytometry (ISAC) Biosafety Committee published standards for the sorting of unfixed cells and is an important resource for biosafety procedures when performing infectious cell sorting. Following a careful risk assessment, if it is determined that a cell sorter must be located within a BSL-3 laboratory, there are a variety of factors to be considered prior to the establishment of the laboratory. This chapter outlines procedures for infectious cell sorting in a BSL-3 environment to facilitate the establishment and safe operation of a BSL-3 cell sorting laboratory. Subjects covered include containment verification, remote operation, disinfection, personal protective equipment (PPE), and instrument-specific modifications for enhanced aerosol evacuation.


Subject(s)
Flow Cytometry/methods , Flow Cytometry/standards , Laboratories/standards , Safety Management/standards , Aerosols/standards , Containment of Biohazards/standards , Facility Regulation and Control/standards , Flow Cytometry/instrumentation , Protective Devices/standards
11.
J Immunol ; 185(11): 6646-63, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20980630

ABSTRACT

Because T cells act primarily through short-distance interactions, homing receptors can identify colocalizing cells that serve common functions. Expression patterns for multiple chemokine receptors on CD4(+) T cells from human blood suggested a hierarchy of receptors that are induced and accumulate during effector/memory cell differentiation. We characterized CD4(+)CD45RO(+) T cells based on expression of two of these receptors, CCR5 and CCR2, the principal subsets being CCR5(-)CCR2(-) (∼70%), CCR5(+)CCR2(-) (∼25%), and CCR5(+)CCR2(+) (∼5%). Relationships among expression of CCR5 and CCR2 and CD62L, and the subsets' proliferation histories, suggested a pathway of progressive effector/memory differentiation from the CCR5(-)CCR2(-) to CCR5(+)CCR2(-) to CCR5(+)CCR2(+) cells. Sensitivity and rapidity of TCR-mediated activation, TCR signaling, and effector cytokine production by the subsets were consistent with such a pathway. The subsets also showed increasing responsiveness to IL-7, and the CCR5(+)CCR2(+) cells were CD127(bright) and invariably showed the greatest response to tetanus toxoid. CCR5(+)CCR2(+) cells also expressed the largest repertoire of chemokine receptors and migrated to the greatest number of chemokines. By contrast, the CCR5(+)CCR2(-) cells had the greatest percentages of regulatory T cells, activated/cycling cells, and CMV-reactive cells, and were most susceptible to apoptosis. Our results indicate that increasing memory cell differentiation can be uncoupled from susceptibility to death, and is associated with an increase in chemokine responsiveness, suggesting that vaccination (or infection) can produce a stable population of effector-capable memory cells that are highly enriched in the CCR5(+)CCR2(+) subset and ideally equipped for rapid recall responses in tissue.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Immunologic Memory , Receptors, CCR2/physiology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , CD4-Positive T-Lymphocytes/cytology , Cell Differentiation/immunology , Cells, Cultured , Humans , Immunophenotyping , Receptors, CCR2/biosynthesis , Receptors, CCR5/biosynthesis , Receptors, CCR5/immunology , Receptors, CCR5/metabolism , Resting Phase, Cell Cycle/immunology , T-Lymphocyte Subsets/cytology
12.
Curr Protoc Cytom ; Chapter 9: Unit 9.34, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20578108

ABSTRACT

Amine-reactive dyes, also known as LIVE/DEAD fixable dead cell stains, are a class of viability dyes suitable for identifying dead cells in samples that will be fixed. These dyes cross the cell membranes of dead cells, and react with free amines in the cytoplasm. Live cells exclude these dyes because their cell membranes are intact, and free dye is washed away after staining. Notably, the reaction is irreversible; therefore, when cells are fixed and permeabilized (as with intracellular staining procedures), the bound dye remains associated with the dead cells (unlike other viability dyes). Since amine-reactive dyes are fluorescent when excited by lasers, dead cells can be identified by flow cytometry. This unit describes procedures, troubleshooting, and outcomes for using the two most commonly used amine-reactive dyes, ViViD and Aqua Blue.


Subject(s)
Amines/chemistry , Coloring Agents/chemistry , Flow Cytometry/methods , Tissue Fixation/methods , Amines/metabolism , Animals , Cell Death , Coloring Agents/metabolism , Humans , Microspheres , Staining and Labeling , T-Lymphocytes/cytology , Titrimetry
13.
Article in English | MEDLINE | ID: mdl-20101649

ABSTRACT

Because of their unique fluorescence properties, quantum dots (QDs) represent a promising new technology in the realm of multicolor flow cytometry. Although commercial reagents and applications for the technology are still in the early phases of their development, the strategies and considerations necessary for successful use are becoming known. This article discusses the value of QDs in multicolor flow cytometry, introduces strategies to successfully incorporate QDs into routine use, and highlights emerging applications of the technology.


Subject(s)
Flow Cytometry/methods , Quantum Dots , Animals , Color , Humans
14.
Cytometry A ; 71(6): 414-37, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17385740

ABSTRACT

BACKGROUND: Cell sorting of viable biological specimens has become very prevalent in laboratories involved in basic and clinical research. As these samples can contain infectious agents, precautions to protect instrument operators and the environment from hazards arising from the use of sorters are paramount. To this end the International Society of Analytical Cytology (ISAC) took a lead in establishing biosafety guidelines for sorting of unfixed cells (Schmid et al., Cytometry 1997;28:99-117). During the time period these recommendations have been available, they have become recognized worldwide as the standard practices and safety precautions for laboratories performing viable cell sorting experiments. However, the field of cytometry has progressed since 1997, and the document requires an update. METHODS: Initially, suggestions about the document format and content were discussed among members of the ISAC Biosafety Committee and were incorporated into a draft version that was sent to all committee members for review. Comments were collected, carefully considered, and incorporated as appropriate into a draft document that was posted on the ISAC web site to invite comments from the flow cytometry community at large. The revised document was then submitted to ISAC Council for review. Simultaneously, further comments were sought from newly-appointed ISAC Biosafety committee members. RESULTS: This safety standard for performing viable cell sorting experiments was recently generated. The document contains background information on the biohazard potential of sorting and the hazard classification of infectious agents as well as recommendations on (1) sample handling, (2) operator training and personal protection, (3) laboratory design, (4) cell sorter set-up, maintenance, and decontamination, and (5) testing the instrument for the efficiency of aerosol containment. CONCLUSIONS: This standard constitutes an updated and expanded revision of the 1997 biosafety guideline document. It is intended to provide laboratories involved in cell sorting with safety practices that take into account the enhanced hazard potential of high-speed sorting. Most importantly, it states that droplet-based sorting of infectious or hazardous biological material requires a higher level of containment than the one recommended for the risk group classification of the pathogen. The document also provides information on safety features of novel instrumentation, new options for personal protective equipment, and recently developed methods for testing the efficiency of aerosol containment.


Subject(s)
Air Pollutants, Occupational/adverse effects , Cell Separation/standards , Containment of Biohazards/standards , Flow Cytometry/standards , Hazardous Substances/adverse effects , Occupational Exposure/prevention & control , Occupational Health , Safety Management/standards , Aerosols , Animals , Containment of Biohazards/methods , Decontamination/standards , Equipment Contamination/prevention & control , Equipment Design , Humans , Risk Assessment
15.
Cytometry A ; 71(2): 73-9, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17200955

ABSTRACT

OBJECTIVE: We evaluated the use of a high power, diode pulsed solid-state laser emitting 532 nm light for immunofluorescence applications. We compared the sensitivity and utility of this laser with the standard 488 nm excitation. METHODS: A flow cytometer was equipped with both a 488 nm and a 532 nm laser; fluorescence emissions from each laser were collected using the same filters and the same detector system. Cells or compensation beads (e.g. latex beads coated with anti-kappa antibodies) were stained with monoclonal antibodies conjugated to phycoerythrin (PE) as well as the PE tandem dyes TRPE, Cy5PE, Cy5.5PE, and Cy7PE. The sensitivity of detection of these reagents as well as those in heavily compensated channels was quantified by measuring the spreading error for a primary detector into a secondary detector. RESULTS: Measurement of the fluorescence emission of PE and PE-tandem dyes was considerably more sensitive when using 532 nm excitation (150 mW) as compared with 488 nm excitation (20 mW). In addition, as the absolute number of photoelectrons collected was greater, there was less measurement-error-induced spread into the compensated channels. As an example, when comparing the spreading error of PE labeled cells into the TRPE detector, the green laser was found to be 15-fold more sensitive as compared with the blue laser. In addition, the blue laser produced more autofluoresent signal from cells as compared with the green laser. Together, these advantages of the 532 nm excitation line provides for a significantly improved detection of immunofluorescence staining.


Subject(s)
Flow Cytometry/methods , Fluorescent Antibody Technique/methods , Lasers , Antibodies, Monoclonal , Fluorescent Dyes , Humans , Leukocytes, Mononuclear/metabolism , Phycoerythrin , Sensitivity and Specificity
16.
Curr Protoc Cytom ; Chapter 3: Unit3.6, 2007 Jan.
Article in English | MEDLINE | ID: mdl-18770851

ABSTRACT

Cell sorting of viable biological specimens has become widespread in laboratories involved in basic and clinical research. As these samples can contain infectious agents, precautions to protect instrument operators and the environment from hazards arising from the use of sorters are paramount. This unit presents a revised and updated version of the biosafety guidelines for sorting of unfixed cells established in 1977 by the International Society of Analytical Cytology (ISAC), whose recommendations have become recognized worldwide as the standard practices and safety precautions for laboratories performing viable cell-sorting experiments. The unit contains background information on the biohazard potential of sorting and the hazard classification of infectious agents as well as recommendations on (1) sample handling, (2) operator training and personal protection, (3) laboratory design, (4) cell sorter setup, maintenance, and decontamination, and (5) testing the instrument for the efficiency of aerosol containment.


Subject(s)
Cell Biology/standards , Cells/cytology , Flow Cytometry/standards , Hazardous Substances , Safety , Cell Separation/methods , Cell Separation/standards , Communicable Disease Control/standards , Containment of Biohazards , Humans , Medical Laboratory Personnel/education , Medical Laboratory Personnel/standards , Safety Management , Societies, Scientific
17.
Nat Med ; 12(8): 972-7, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16862156

ABSTRACT

Immune responses arise from a wide variety of cells expressing unique combinations of multiple cell-surface proteins. Detailed characterization is hampered, however, by limitations in available probes and instrumentation. Here, we use the unique spectral properties of semiconductor nanocrystals (quantum dots) to extend the capabilities of polychromatic flow cytometry to resolve 17 fluorescence emissions. We show the need for this power by analyzing, in detail, the phenotype of multiple antigen-specific T-cell populations, revealing variations within complex phenotypic patterns that would otherwise remain obscure. For example, T cells specific for distinct epitopes from one pathogen, and even those specific for the same epitope, can have markedly different phenotypes. The technology we describe, encompassing the detection of eight quantum dots in conjunction with conventional fluorophores, should expand the horizons of flow cytometry, as well as our ability to characterize the intricacies of both adaptive and innate cellular immune responses.


Subject(s)
Flow Cytometry/methods , Immunophenotyping/methods , Nanotechnology , Quantum Dots , CD3 Complex/immunology , CD8 Antigens/immunology , Epitopes , Fluorescein-5-isothiocyanate , Fluorescent Dyes , HLA-DR Antigens/immunology , Humans , Major Histocompatibility Complex , Semiconductors , T-Lymphocytes/immunology
18.
J Immunol Methods ; 313(1-2): 199-208, 2006 Jun 30.
Article in English | MEDLINE | ID: mdl-16756987

ABSTRACT

Membrane-damaged cells caused by either mechanical trauma or through normal biological processes can produce artifacts in immunophenotyping analysis by flow cytometry. Dead cells can nonspecifically bind monoclonal antibody conjugates, potentially leading to erroneous conclusions, particularly when cell frequencies are low. To date, DNA intercalating dyes (Ethidium monoazaide (EMA), Propidium Iodide, 7AAD, etc.) or Annexin V have been commonly used to exclude dead cells; however, each suffer from technical problems. The first issue with such dyes is the dependence on a consistent dead cell source for fluorescence compensation. Another major issue is the stability of the staining; except for EMA, fixation and permeablization used for intracellular staining procedures can cause loss of fluorescence. EMA requires a UV exposure to covalently bond to DNA; while this dye is effective and is not affected by intracellular treatments it is weakly fluorescent. Here we report on the optimization of a new class of viability dyes, the amine reactive viability dyes (ViD) as a dead cell exclusion marker. The inclusion of ViD into the staining panel was found to be simple, reproducible and can have a significant benefit on the accuracy of identifying appropriate cell populations. We show the fluorescence of cells stained with these dyes correlates with traditional dead cell discriminating markers, even after fixation and permeabilization. Amine reactive viability dyes are a powerful tool for fluorescence immunophenotyping experiments.


Subject(s)
Amines/chemistry , Flow Cytometry/methods , Fluorescent Dyes/chemistry , Staining and Labeling/methods , Annexins/chemistry , Antigens, CD/analysis , Apoptosis , Azides/chemistry , Cell Survival , Humans , Interferon-gamma/metabolism , Leukocytes, Mononuclear/chemistry , Leukocytes, Mononuclear/cytology , Microspheres , Reproducibility of Results , Titrimetry
19.
Nat Protoc ; 1(3): 1522-30, 2006.
Article in English | MEDLINE | ID: mdl-17406444

ABSTRACT

This protocol outlines a three-part quality assurance program to optimize, calibrate and monitor flow cytometers used to measure cells labeled with five or more fluorochromes (a practice known as polychromatic flow cytometry). The initial steps of this program (system optimization) ensure that the instrument's lasers, mirrors and filters are optimally configured for the generation and transmission of multiple fluorescent signals. To determine the sensitivity and dynamic range of each fluorescence detector, the system is then calibrated by measuring fluorescence over a range of photomultiplier tube (PMT) voltages by determining the PMT voltage range and linearity (Steps 2-10) and validating the PMT voltage (Steps 11-17). Finally, to ensure consistent performance, we provide procedures to monitor the precision, accuracy and sensitivity of fluorescence measurements over time. All three aspects of this program should be performed upon installation, or whenever changes occur along the flow cytometer's optical path. However, only a few of these procedures need to be carried out on a routine basis.


Subject(s)
Flow Cytometry/methods , Fluorescent Dyes , Quality Control , Calibration , Flow Cytometry/instrumentation , Sensitivity and Specificity
20.
Proc Natl Acad Sci U S A ; 102(22): 7916-21, 2005 May 31.
Article in English | MEDLINE | ID: mdl-15905333

ABSTRACT

The pathways for differentiation of human CD4(+) T cells into functionally distinct subsets of memory cells in vivo are unknown. The identification of these subsets and pathways has clear implications for the design of vaccines and immune-targeted therapies. Here, we show that populations of apparently naive CD4(+) T cells express the chemokine receptors CXCR3 or CCR4 and demonstrate patterns of gene expression and functional responses characteristic of memory cells. The proliferation history and T cell receptor repertoire of these chemokine-receptor(+) cells suggest that they are very early memory CD4(+) T cells that have "rested down" before acquiring the phenotypes described for "central" or "effector" memory T cells. In addition, the chemokine-receptor(+) "naive" populations contain Th1 and Th2 cells, respectively, demonstrating that Th1/Th2 differentiation can occur very early in vivo in the absence of markers conventionally associated with memory cells. We localized ligands for CXCR3 and CCR4 to separate foci in T cell zones of tonsil, suggesting that the chemokine-receptor(+) subsets may be recruited and contribute to segregated, polarized microenvironments within lymphoid organs. Importantly, our data suggest that CD4(+) T cells do not differentiate according to a simple schema from naive --> CD45RO(+) noneffector/central memory --> effector/effector memory cells. Rather, developmental pathways branch early on to yield effector/memory populations that are highly heterogeneous and multifunctional and have the potential to become stable resting cells.


Subject(s)
CD4-Positive T-Lymphocytes/cytology , Cell Differentiation/immunology , Gene Expression/immunology , Immunologic Memory/immunology , T-Lymphocyte Subsets/cytology , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Flow Cytometry , Humans , In Situ Hybridization , Ligands , Palatine Tonsil/cytology , Receptors, CCR4 , Receptors, CXCR3 , Receptors, Chemokine/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tetradecanoylphorbol Acetate
SELECTION OF CITATIONS
SEARCH DETAIL
...