Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Mar Pollut Bull ; 198: 115822, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38016206

ABSTRACT

Conservation of ecosystems is an important tool for climate change mitigation. Seagrasses, mangroves, saltmarshes and other marine ecosystems have particularly high capacities to sequester and store organic carbon (blue carbon), and are being impacted by human activities. Calls have been made to mainstream blue carbon into policies, including carbon markets. Building on the scientific literature and the French voluntary carbon standard, the 'Label Bas-Carbone', we develop the first method for the conservation of Posidonia oceanica seagrasses using carbon finance. This methodology assesses the emission reduction potential of projects that reduce physical impacts from boating and anchoring. We show how this methodology was institutionalized thanks to a tiered approach on key parameters including carbon stocks, degradation rates, and decomposition rates. We discuss future needs regarding (i) how to strengthen the robustness of the method, and (ii) the expansion of the method to restoration of seagrasses and to other blue carbon ecosystems.


Subject(s)
Alismatales , Ecosystem , Humans , Carbon/metabolism , Alismatales/metabolism , Carbon Sequestration , France , Institutionalization
2.
Mar Environ Res ; 183: 105847, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36535083

ABSTRACT

In Mediterranean, Posidonia oceanica develops a belowground complex structure ('matte') able to store large amounts of carbon over thousands of years. The inventory of blue carbon stocks requires the coupling of mapping techniques and in situ sediment sampling to assess the size and the variability of these stocks. This study aims to quantify the organic (Corg) and inorganic (Cinorg) carbon stocks in the P. oceanica matte of the Calvi Bay (Corsica) using sub-bottom profiler imagery and biogeochemical analysis of sediment cores. The matte thicknesses map (average ± SD: 2.2 m ± 0.4 m) coupled with marine benthic habitat cartography allows to estimate matte volume at 12 473 352 m3. The cumulative stocks were assessed at 20.2-50.3 kg Corg m-2 and 26.6-58.7 kg Cinorg m-2 within the first meter of depth on matte (3632 ± 486 cal yr BP). The data contributed to estimate the overall carbon stocks at 389 994 t Corg and 615 558 t Cinorg, offering a new insight of the heterogeneity of blue carbon stocks in seagrass meadows. Variability of carbon storage capacity of matte influenced by substrate is discussed.


Subject(s)
Alismatales , Carbon , Carbon/analysis , Bays , Geologic Sediments/chemistry , Ecosystem , France , Mediterranean Sea
3.
Sci Total Environ ; 838(Pt 1): 155864, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35569651

ABSTRACT

In the last decades, the increasing necessity to reduce atmospheric carbon dioxide (CO2) concentrations has intensified interest in quantifying the capacity of coastal ecosystems to sequester carbon, referred to commonly as 'Blue Carbon' (BC). Among coastal habitats, seagrass meadows are considered as natural carbon sinks due to their capacity to store large amounts of carbon in their sediments over long periods of time. However, the spatial heterogeneity of carbon stocks in seagrass sediments needs to be better understood to improve the accuracy of BC assessments, particularly where there is high environmental variability. In the Mediterranean, Posidonia oceanica (L.) Delile constitutes extensive meadows considered as long-term carbon sinks due to the development of an exceptional structure known as 'matte', reaching several meters in height, which can be preserved over millennia. In order to specify the role of P. oceanica meadows in climate change mitigation, an estimate of carbon stocks has been conducted along the eastern coast of Corsica (NW Mediterranean). The approach is mainly based on the biogeochemical analysis of 39 sediment cores. Organic carbon (Corg; 327 ± 150 t ha-1, mean ± SE) and inorganic carbon stocks (Cinorg; 245 ± 45 t ha-1) show a high variability related to water depth, matrix (sandy vs rocky substrate) or the depositional environment (coastal vs estuary). The isotopic signature (δ13C) revealed a substantial contribution of allochthonous inputs of organic matter (macroalgae and sestonic sources) mainly in estuarine environment and shallow areas. The carbon stocks in the first 250 cm of matte (average thickness) were estimated at 5.6-14.0 million t Corg (study site) and 14.6-36.9 million t Corg (Corsica), corresponding to 11.6-29.2 and 30.4-76.8 years of CO2 emissions from the population of Corsica.


Subject(s)
Alismatales , Ecosystem , Carbon Dioxide , Carbon Sequestration , Geologic Sediments/chemistry , Mediterranean Sea
5.
Mar Environ Res ; 170: 105415, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34298265

ABSTRACT

Among blue carbon ecosystems, seagrass meadows have been highlighted for their contribution to the ocean carbon cycle and climate change mitigation derived from their capacity to store large amounts of carbon over long periods of time in their sediments. Most of the available estimates of carbon stocks beneath seagrass meadows are based on the analysis of short sediment cores in very limited numbers. In this study, high-resolution seismic reflection techniques were applied to obtain an accurate estimate of the potential size of the organic deposit underlying the meadows of the Mediterranean seagrass Posidonia oceanica (known as 'matte'). Seismic profiles were collected over 1380 km of the eastern continental shelf of Corsica (France, Mediterranean Sea) to perform a large-scale inventory of the carbon stock stored in sediments. The seismic data were ground-truthed by sampling sediment cores and using calibrated seismo-acoustic surveys. The data interpolation map highlighted a strong spatial heterogeneity of the matte thickness. The height of the matte at the site was estimated at 251.9 cm, being maximum in shallow waters (10-20 m depth), near river mouths and lagoon outlets, where the thickness reached up to 867 cm. Radiocarbon dates revealed the presence of seagrass meadows since the mid-Holocene (7000-9000 cal yr BP). Through the top meter of soil, the matte age was estimated at 1656 ± 528 cal yr BP. The accretion rate showed a high variability resulting from the interplay of multiple factors. Based on the surface area occupied by the meadows, the average matte thickness underneath them and the carbon content, the matte volume and total Corg stock were estimated at 403.5 ± 49.4 million m3 and 15.6 ± 2.2 million t Corg, respectively. These results confirm the need for the application of large-scale methods to estimate the size of the carbon sink associated with seagrass meadows worldwide.


Subject(s)
Alismatales , Carbon Sequestration , Carbon , Ecosystem , Geologic Sediments
6.
Mar Environ Res ; 165: 105236, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33360312

ABSTRACT

Coastal marine vegetation has been recently highlighted for its highly efficient carbon storage capacity. Among the sixty-four species of seagrass, Posidonia oceanica, a Mediterranean endemic species, appears to be the most effective in carbon fixation and storage. Based on new data from the study of one of the largest P. oceanica meadows in the Mediterranean Sea (100 km of coastline, 20 425 ha), and a synthesis of available data from the whole of the Mediterranean basin, the aim of this work is to evaluate the amount of carbon fixed each year by P. oceanica and sequestered in the matte, in relation with the mitigation of the impact of climate change (carbon sink). The mean total carbon fixation (blades, sheaths and rhizomes) per year varies between 33.5 and 426.6 g C.m-2 and the mean carbon sequestration (long-term sink in the matte), corresponding to the sheath and rhizome tissues, varies between 7.7 and 84.4 g C.m-2, with a clear decreasing trend according to depth because of the meadow density decrease. The synthesis of a hundred measurements made throughout the Mediterranean Sea and at depths between 0.5 and 32.0 m provides a basis for estimating the average annual carbon fixation and sequestration rate throughout the Mediterranean basin. The fixation of the blades is estimated at 1 024 t C.ha-1.yr-1, that of the sheaths at 220 t C ha-1.yr-1 and that of the rhizomes at 58 t C ha-1.yr-1; i.e. a total fixation rate of 1 302 t C ha-1.yr-1 and sequestration rate (dead sheaths and rhizomes) of 278 t C ha-1.yr-1. This annual carbon fixation represents only 0.61% on average of CO2 emissions/releases for all Mediterranean countries but in the large Mediterranean islands this fixation is on average 3.1% and can reach almost 14.4% for Corsica. Moreover, the major advantage of the P. oceanica meadow lies in its capacity to store carbon from annual carbon sequestration for centuries to millennia and can be compared to several terrestrial ecosystems considered to be efficient in carbon storage (peatlands).


Subject(s)
Alismatales , Climate Change , Ecosystem , France , Mediterranean Sea
7.
Mar Environ Res ; 161: 105085, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32836108

ABSTRACT

High-resolution seismic reflection data have been used over the last decades to estimate the thickness of the long-term Blue Carbon sink associated to the below-ground sediment deposit (matte) of the Posidonia oceanica meadows. Time-to-depth conversion of these geophysical datasets was usually performed assuming a sound velocity in this structure, but appropriate seismic interval velocity measurements is necessary to achieve accurate calibration. This study describes the first methodology to estimate the seismic interval velocity in the matte. This approach performed on the eastern continental shelf of Corsica island (France, NW Mediterranean) is based on measurements of the vertical matte profile from high-resolution seismic reflection profiles (s TWTT) and from seafloor morpho-bathymetric DTM (multibeam echosounders - MBES and Light Detection and Ranging - LiDAR surveys) calibrated with ground-truthing data. A biogeosedimentological analysis of horizontal cores sampled in vertical matte escarpments has been undertaken to identify the potential relationship of sediment and environmental parameters with sound velocity. The cross-comparison and the data intercalibration show significant correlation of MBES (R2 = 0.872) and LiDAR datasets (R2 = 0.883) with direct underwater measurements. Seismic interval velocities (n = 367) have been found to range between 1631.9 and 1696.8 m s-1 (95% confidence interval) and are estimated on average at 1664.4 m s-1, which is similar to the literature for unconsolidated marine sediments. The prediction map provided by the ordinary kriging method emphasized, however, a high variability of sound velocity within the study area. The results showed that changes in sound velocity in the matte are positively and strongly correlated with sand and gravel content and environmental factors such as distance to coastal river mouths and coastline. However, it was found that a negative relationship linked sound velocity with total and coarse organic content of matte deposits.


Subject(s)
Alismatales , Carbon , France , Grassland , Mediterranean Sea
8.
Nat Commun ; 10(1): 3356, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31350407

ABSTRACT

Seagrass meadows, key ecosystems supporting fisheries, carbon sequestration and coastal protection, are globally threatened. In Europe, loss and recovery of seagrasses are reported, but the changes in extent and density at the continental scale remain unclear. Here we collate assessments of changes from 1869 to 2016 and show that 1/3 of European seagrass area was lost due to disease, deteriorated water quality, and coastal development, with losses peaking in the 1970s and 1980s. Since then, loss rates slowed down for most of the species and fast-growing species recovered in some locations, making the net rate of change in seagrass area experience a reversal in the 2000s, while density metrics improved or remained stable in most sites. Our results demonstrate that decline is not the generalised state among seagrasses nowadays in Europe, in contrast with global assessments, and that deceleration and reversal of declining trends is possible, expectingly bringing back the services they provide.


Subject(s)
Magnoliopsida/growth & development , Biodiversity , Conservation of Natural Resources , Ecosystem , Europe , History, 20th Century , History, 21st Century , Magnoliopsida/classification , Marine Biology/history
9.
Mar Pollut Bull ; 109(1): 61-71, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27289285

ABSTRACT

Intensive anchoring of leisure boats in seagrass meadows leads to mechanical damages. This anthropogenic impact creates bare mat patches that are not easily recolonized by the plant. Several tools are used to study human impacts on the structure of seagrass meadows but they are not able to assess the indirect and long term implication of mechanical destruction. We chose to investigate the possible changes in the substrate chemistry given contrasted boat impacts. Our observations show that hydrogen sulfide concentrations remain high at 15 and 20m depth (42.6µM and 18.8µM) several months after the highest period of anchoring during the summer. Moreover, our multidisciplinary study reveals that anchoring impacts of large boats at 15 and 20m depth can potentially change the seascape structure. By taking into account both structural and chemical assessments, different managing strategies must be applied for coastal areas under anthropogenic pressures.


Subject(s)
Alismatales , Ecosystem , Ships
10.
Sci Rep ; 5: 12505, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26216526

ABSTRACT

Posidonia oceanica meadows are declining at alarming rates due to climate change and human activities. Although P. oceanica is considered the most important and well-studied seagrass species of the Mediterranean Sea, to date there has been a limited effort to combine all the spatial information available and provide a complete distribution of meadows across the basin. The aim of this work is to provide a fine-scale assessment of (i) the current and historical known distribution of P. oceanica, (ii) the total area of meadows and (iii) the magnitude of regressive phenomena in the last decades. The outcomes showed the current spatial distribution of P. oceanica, covering a known area of 1,224,707 ha, and highlighted the lack of relevant data in part of the basin (21,471 linear km of coastline). The estimated regression of meadows amounted to 34% in the last 50 years, showing that this generalised phenomenon had to be mainly ascribed to cumulative effects of multiple local stressors. Our results highlighted the importance of enforcing surveys to assess the status and prioritize areas where cost-effective schemes for threats reduction, capable of reversing present patterns of change and ensuring P. oceanica persistence at Mediterranean scale, could be implemented.


Subject(s)
Poaceae/growth & development , Climate Change , Mediterranean Sea
11.
C R Biol ; 338(7): 484-93, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26051038

ABSTRACT

The distribution and the vitality of the P. oceanica meadow were monitored in the western Mediterranean at 15 sites along the coasts of Corsica (1000 km of coastline) using two monitoring systems, the Posidonia Monitoring Network and SeagrassNet, between 2004 and 2013. While the vitality of the meadow is satisfactory overall, due to the low impact of human pressure along these coasts, patterns of change over time show a slight degradation of the main descriptors of the meadow. The meadow's vitality index had declined on average by 8.6%, the BiPo index by 9.8%, and there was a regression of the lower limit at six sites. While this pattern of change may reflect local alterations in the environment (increase or decline in human pressure), the regressive dynamic of the meadow observed at the lower limit at several reference sites (e.g., Marine Protected Areas, sites distant from sources of human impact) is more worrying. Two hypotheses might explain the regression observed: (i) the rise in mean sea level during the study period, which may have resulted in a significant regression in sectors where the slope is relatively slight, and (ii) the North Atlantic Oscillation (NAO), which declined from 2002 to reach very low values in 2010.


Subject(s)
Alismatales/physiology , Climate Change , Environmental Monitoring/methods , France , Humans , Mediterranean Sea , Time Factors
12.
Conserv Biol ; 29(4): 1228-1234, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25704365

ABSTRACT

Effective ecosystem-based management requires understanding ecosystem responses to multiple human threats, rather than focusing on single threats. To understand ecosystem responses to anthropogenic threats holistically, it is necessary to know how threats affect different components within ecosystems and ultimately alter ecosystem functioning. We used a case study of a Mediterranean seagrass (Posidonia oceanica) food web and expert knowledge elicitation in an application of the initial steps of a framework for assessment of cumulative human impacts on food webs. We produced a conceptual seagrass food web model, determined the main trophic relationships, identified the main threats to the food web components, and assessed the components' vulnerability to those threats. Some threats had high (e.g., coastal infrastructure) or low impacts (e.g., agricultural runoff) on all food web components, whereas others (e.g., introduced carnivores) had very different impacts on each component. Partitioning the ecosystem into its components enabled us to identify threats previously overlooked and to reevaluate the importance of threats commonly perceived as major. By incorporating this understanding of system vulnerability with data on changes in the state of each threat (e.g., decreasing domestic pollution and increasing fishing) into a food web model, managers may be better able to estimate and predict cumulative human impacts on ecosystems and to prioritize conservation actions.


Hacia un Marco de Trabajo para la Evaluación y el Manejo de los Impactos Humanos Acumulativos sobre las Redes Alimenticias Marinas Resumen El manejo efectivo con base en los ecosistemas requiere entender la respuesta de los ecosistemas a múltiples amenazas humanas en lugar de enfocarse en amenazas individuales. Para entender holísticamente la respuesta de los ecosistemas a las múltiples amenazas antropogénicas es necesario saber cómo estas amenazas afectan a los diferentes componentes dentro de los ecosistemas y cómo alteran finalmente el funcionamiento de los ecosistemas. Usamos el estudio de caso de la red alimenticia del pasto marino del Mediterráneo (Posidonia oceanica) y la obtención de conocimiento de expertos en una aplicación de los pasos iniciales de un método para la evaluación de los impactos humanos acumulativos sobre las redes alimenticias. Produjimos un modelo de red alimenticia de pastos marinos, determinamos las principales relaciones tróficas, identificamos a las principales amenazas para los componentes de la red y evaluamos la vulnerabilidad de los componentes a esas amenazas. Algunas amenazas tuvieron impactos altos (p. ej.: infraestructura costera) o bajos (p. ej.: escorrentía agrícola) sobre todos los componentes de la red, mientras que otros (p. ej.: carnívoros introducidos) tuvieron impactos muy diferentes sobre cada componente. Partir al ecosistema en sus componentes nos permitió identificar amenazas no vistas previamente y reevaluar la importancia de las amenazas percibidas comúnmente como mayores. Al incorporar este entendimiento de la vulnerabilidad del sistema con datos sobre los cambios en el estado de cada amenaza (p. ej.: disminución de la contaminación doméstica e incremento de la pesca) al modelo de red alimenticia, los manejadores pueden ser capaces de estimar y predecir de mejor manera los impactos humanos acumulativos sobre los ecosistemas y priorizar las acciones de conservación.


Subject(s)
Alismatales/physiology , Conservation of Natural Resources/methods , Food Chain , Fisheries , Humans , Mediterranean Sea , Water Pollution, Chemical/adverse effects
13.
PLoS One ; 9(6): e98994, 2014.
Article in English | MEDLINE | ID: mdl-24933020

ABSTRACT

Biotic indices, which reflect the quality of the environment, are widely used in the marine realm. Sometimes, key species or ecosystem engineers are selected for this purpose. This is the case of the Mediterranean seagrass Posidonia oceanica, widely used as a biological quality element in the context of the European Union Water Framework Directive (WFD). The good quality of a water body and the apparent health of a species, whether or not an ecosystem engineer such as P. oceanica, is not always indicative of the good structure and functioning of the whole ecosystem. A key point of the recent Marine Strategy Framework Directive (MSFD) is the ecosystem-based approach. Here, on the basis of a simplified conceptual model of the P. oceanica ecosystem, we have proposed an ecosystem-based index of the quality of its functioning, compliant with the MSFD requirements. This index (EBQI) is based upon a set of representative functional compartments, the weighting of these compartments and the assessment of the quality of each compartment by comparison of a supposed baseline. The index well discriminated 17 sites in the north-western Mediterranean (French Riviera, Provence, Corsica, Catalonia and Balearic Islands) covering a wide range of human pressure levels. The strong points of the EBQI are that it is easy to implement, non-destructive, relatively robust, according to the selection of the compartments and to their weighting, and associated with confidence indices that indicate possible weakness and biases and therefore the need for further field data acquisition.


Subject(s)
Alismatales/growth & development , Ecological Parameter Monitoring/methods , Water Pollutants/analysis , Biota , Humans , Mediterranean Sea , Water Quality
14.
C R Biol ; 335(10-11): 668-72, 2012.
Article in English | MEDLINE | ID: mdl-23199634

ABSTRACT

Coralligenous habitat and rhodoliths beds are very important in terms of biodiversity in the Mediterranean Sea. During an oceanographic campaign, carried out in northern Cap Corse, new coralligenous structures have been discovered. These structures, never previously identified in the Mediterranean Sea, are named "coralligenous atolls" because of their circular shape. The origin and growth dynamics of these atolls are still unknown but their form does not appear to result from hydrodynamic action and an anthropogenic origin also seems unlikely. However, this kind of shape seems rather closer to that of other circular structures (e.g. pockmarks) the origin of which is related to gaseous emissions. Further studies are needed to confirm this hypothesis through chemical analysis.


Subject(s)
Anthozoa/physiology , Ecosystem , Animals , Anthozoa/anatomy & histology , Anthozoa/genetics , Biodiversity , Gases/analysis , Mediterranean Sea , Oceanography
15.
Environ Monit Assess ; 171(1-4): 365-80, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20091345

ABSTRACT

The seagrass Posidonia oceanica is extensively monitored in Mediterranean coastal waters and is an ideal candidate for an eco-regional assessment of the coastal ecosystem. The aim of this study is to evaluate the potential of P. oceanica as eco-regional indicator for its assessment at the scale of Mediterranean basin. For this purpose, regional and national P. oceanica monitoring programmes are identified, and their data and metadata are collected and compared in terms of objectives, strategies, sampling designs and sampling methods. The analysis identifies a number of issues concerning data quality, reliability and comparability. In particular, the adoption of different sampling designs and methods may introduce relevant errors when comparing data. The results of this study stress the necessity of carefully planning monitoring programmes. Moreover, it highlights that the adoption of a number of common tools would facilitate all Mediterranean monitoring activities and allows an optimisation of management efforts at an eco-regional scale.


Subject(s)
Alismatales , Ecosystem , Environmental Monitoring/methods , Alismatales/chemistry , Mediterranean Sea , Seawater/chemistry , Water Pollutants, Chemical/analysis
16.
J Environ Manage ; 90(3): 1494-501, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19054603

ABSTRACT

The assessment of human-induced pressures on the coastal area is essential to target management plans effectively, and moreover is required by the EU Water Framework Directive. A simple and cost-effective assessment of human-induced pressures on the coastal zone is applied using two methodologies: a qualitative visual assessment which uses satellite images; and a quantitative assessment based on governmental census data. These methods are applied to defined areas (23 areas) of four Italian regions: Liguria, Tuscany, Latium and Sardinia. The results show a high agreement (83%) between these two methods, in which only four of the 23 areas are classified differently. These differences may mainly be ascribed to the qualitative or quantitative properties of the methods, and to the different geographical units adopted. These characteristics however provide complementary information, which suggests that the application of both proposed methods confirms reliability and allows fine-tuning of the assessment. The pressure assessment proposed is simple, time and cost-effective, and repeatable over time and space. It therefore can be applied in different contexts to respond to legislative requirements or to target management plans and remedial actions effectively.


Subject(s)
Environment , Environmental Monitoring , Human Activities , Conservation of Natural Resources , Ecosystem , Italy
17.
BMC Ecol ; 8: 20, 2008 Dec 11.
Article in English | MEDLINE | ID: mdl-19077242

ABSTRACT

BACKGROUND: Plant defense strategy is usually a result of trade-offs between growth and differentiation (i.e. Optimal Defense Theory--ODT, Growth Differentiation Balance hypothesis--GDB, Plant Apparency Theory--PAT). Interaction between the introduced green alga Caulerpa taxifolia and the endemic seagrass Posidonia oceanica in the Mediterranean Sea offers the opportunity to investigate the plausibility of these theories. We have accordingly investigated defense metabolite content and growth year-round, on the basis of an interaction gradient. RESULTS: When in competition with P. oceanica, C. taxifolia exhibits increased frond length and decreased Caulerpenyne--CYN content (major terpene compound). In contrast, the length of P. oceanica leaves decreases when in competition with C. taxifolia. However, the turnover is faster, resulting in a reduction of leaf longevity and an increase on the number of leaves produced per year. The primary production is therefore enhanced by the presence of C. taxifolia. While the overall concentration of phenolic compounds does not decline, there is an increase in some phenolic compounds (including ferulic acid and a methyl 12-acetoxyricinoleate) and the density of tannin cells. CONCLUSION: Interference between these two species determines the reaction of both, confirming that they compete for space and/or resources. C. taxifolia invests in growth rather than in chemical defense, more or less matching the assumptions of the ODT and/or PAT theories. In contrast, P. oceanica apparently invests in defense rather than growth, as predicted by the GDB hypothesis. However, on the basis of closer scrutiny of our results, the possibility that P. oceanica is successful in finding a compromise between more growth and more defense cannot be ruled out.


Subject(s)
Alismatales/growth & development , Caulerpa/growth & development , Ecosystem , Alismatales/metabolism , Caulerpa/metabolism , Mediterranean Sea , Phenols/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Population Dynamics , Seasons , Sesquiterpenes/metabolism
18.
J Chem Ecol ; 33(5): 1083-8, 2007 May.
Article in English | MEDLINE | ID: mdl-17404815

ABSTRACT

In recent times, more and more studies have focused on flavonoids as biomarkers of environmental quality in aquatic plants, in particular, Posidonia oceanica (Linnaeus) Delile. It is therefore of interest to determine how different prehandling methods can affect flavonoid concentrations. The methods tested were (1) immediate extraction of fresh samples, (2) extraction after 48 hr chilling, (3) freeze-drying, and (4) oven drying. Chilling and freeze-drying considerably altered the quantity of flavonoids measured, but not their profile. The effect of oven drying was not significant. Chilling led to a loss of 57% of total (pro)anthocyanidins, 39% of total flavonols, and 48% of all simple flavonols (myricetin, quercetin, isorhamnetin, and kaempferol). Freeze-drying caused a loss of 71% of total (pro)anthocyanidins, 87% of total flavonols, and 95% of all simple flavonols.


Subject(s)
Alismatales/chemistry , Flavonols/analysis , Proanthocyanidins/analysis , Cold Temperature , Desiccation , Freeze Drying , Hot Temperature
19.
Environ Manage ; 38(6): 889-95, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17001505

ABSTRACT

Integrated Coastal Zone Management (ICZM) contributes towards maximizing the benefits provided by the coastal zone and minimizing conflicts and the harmful effects of activities upon each other. The coastal zone includes highly productive and biologically diverse ecosystems, but ecological data (including structure and processes) seem to be neglected. The purpose of this article is to present a case study of Posidonia oceanica meadows (seagrass beds) along the Corsican coastline (Mediterranean Sea) in order to exemplify the usefulness of ecological data to Integrated Costal Management programs. We will try to determine how the use of organisms could be enhanced. These investigations show the undoubted success of the Corsican Posidonia oceanica protection program, with a detailed description of the ICZM that precisely presents each component (e.g., mapping, assessment of water quality, implementation of a system to aid decision-making concerning the installation of new aquaculture units). This experience on the Corsican coasts could be used as an example in order to transfer to other locations in the Mediterranean Sea and/or to other target species.


Subject(s)
Alismatales/growth & development , Conservation of Natural Resources/methods , Conservation of Natural Resources/statistics & numerical data , Ecosystem , Models, Theoretical , Alismatales/anatomy & histology , Aquaculture/methods , France , Mediterranean Sea
20.
BMC Ecol ; 6: 12, 2006 Sep 11.
Article in English | MEDLINE | ID: mdl-16965615

ABSTRACT

BACKGROUND: Within semi-closed areas like the Mediterranean Sea, anthropic wastes tend to concentrate in the environment. Metals, in particular, are known to persist in the environment and can affect human health due to accumulation in the food chain. The seagrass Posidonia oceanica, widely found in Mediterranean coastal waters, has been chosen as a "sentinel" to quantify the distribution of such pollutants within the marine environment. Using a technique similar to dendrochronology in trees, it can act as an indicator of pollutant levels over a timeframe of several months to years. In the present study, we measured and compared the levels of eight trace metals (Cr, Ni, Cu, Zn, As, Se, Cd, and Pb) in sheaths dated by lepidochronology and in leaves of shoots sampled from P. oceanica meadows collected from six offshore sites in northern Corsica between 1988 and 2004; in the aim to determine 1) the spatial and 2) temporal variations of these metals in these areas and 3) to compared these two types of tissues. RESULTS: We found low trace metal concentrations with no increase over the last decade, confirming the potential use of Corsican seagrass beds as reference sites for the Mediterranean Sea. Temporal trends of trace metal concentrations in sheaths were not significant for Cr, Ni, Cu, As or Se, but Zn, Cd, and Pb levels decreased, probably due to the reduced anthropic use of these metals. Similar temporal trends between Cu levels in leaves (living tissue) and in sheaths (dead tissue) demonstrated that lepidochronology linked with Cu monitoring is effective for surveying the temporal variability of this metal. CONCLUSION: Leaves of P. oceanica can give an indication of the metal concentration in the environment over a short time period (months) with good accuracy. On the contrary, sheaths, which gave an indication of changes over long time periods (decades), seem to be less sensitive to variations in the metal concentration in the environment. Changes in human consumption of metals (e.g., the reduction of Pb in fuel) are clearly reflected in both organs. These results confirm that P. oceanica is a good bioindicator of metals and a good biomonitor species for assessing Cu in the environment.


Subject(s)
Alismatales/chemistry , Environmental Monitoring/methods , Metals/analysis , Water Pollutants, Chemical/analysis , Alismatales/metabolism , France , Mediterranean Sea , Metals/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Seawater/chemistry , Time Factors , Water Pollutants, Chemical/metabolism , Water Pollution, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...